174,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
87 °P sammeln
  • Gebundenes Buch

Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers…mehr

Produktbeschreibung
Thermoelectricity and Heat Transport in Graphene and Other 2D Nanomaterials describes thermoelectric phenomena and thermal transport in graphene and other 2-dimentional nanomaterials and devices. Graphene, which is an example of an atomic monolayered material, has become the most important growth area in materials science research, stimulating an interest in other atomic monolayeric materials. The book analyses flow management, measurement of the local temperature at the nanoscale level and thermoelectric transducers, with reference to both graphene and other 2D nanomaterials. The book covers in detail the mechanisms of thermoelectricity, thermal transport, interface phenomena, quantum dots, non-equilibrium states, scattering and dissipation, as well as coherent transport in low-dimensional junctions in graphene and its allotropes, transition metal dichalcogenides and boron nitride. This book aims to show readers how to improve thermoelectric transducer efficiency in graphene and other nanomaterials. The book describes basic ingredients of such activity, allowing readers to gain a greater understanding of fundamental issues related to the heat transport and the thermoelectric phenomena of nanomaterials. It contains a thorough analysis and comparison between theory and experiments, complemented with a variety of practical examples.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Serhii E. Shafraniuk is Research Associate Professor at the Department of Physics and Astronomy, Northwestern University. At Northwestern (2002-present) he serves as a Principle Investigator (PI) in research projects related to electromagnetic properties of carbon nanotube and graphene, field effect transistors, thermoelectric transport in carbon nanotube and graphene multi-barrier devices, and qubits. He has received the B.A. degree (cum laude) and the Ph.D. degree in physics from Kiev State University, Ukraine, in 1980 and 1985, respectively. Besides, Serhii had been honored the Doctor of Sciences degree from the Institute of Metal Physics, Academy of Sciences of Ukraine in 2001. His thesis work has focused on non-equilibrium phenomena in inhomogeneous superconductors. Before coming to the USA, Serhii had been working in various leading research centers in Europe and Japan (1990-2002). In particular from 1995 to 1999, he was a Foreign Research Staff Member at the Research Institute of Electrical Communication, Tohoku University, Japan. Prof. Shafraniuk has served as organizing committee member of several International Symposiums and Conferences related to the superconductivity nanoscience, and condensed matter.