High Quality Content by WIKIPEDIA articles! En mathématiques, le théorème de d'Alembert-Gauss est parfois appelé le théorème de d'Alembert ou encore le théorème fondamental de l'algèbre. Il indique que tout polynôme non constant, à coefficients dans les nombres complexes, admet au moins une racine. En conséquence, tout polynôme à coefficients entiers, rationnels ou encore réels admet au moins une racine complexe, car ces nombres sont aussi des complexes. Une fois ce résultat établi, il devient simple de montrer que sur mathbb C, le corps des nombres complexes, tout polynôme P est scindé, c'est-à-dire qu'il se décompose de manière unique en produit d'une constante et d'autant de polynômes unitaires du premier degré que le degré de P.