110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Gebundenes Buch

With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works…mehr

Produktbeschreibung
With the increasing popularization of the Internet, together with the rapid development of 3D scanning technologies and modeling tools, 3D model databases have become more and more common in fields such as biology, chemistry, archaeology and geography. People can distribute their own 3D works over the Internet, search and download 3D model data, and also carry out electronic trade over the Internet. However, some serious issues are related to this as follows: (1) How to efficiently transmit and store huge 3D model data with limited bandwidth and storage capacity; (2) How to prevent 3D works from being pirated and tampered with; (3) How to search for the desired 3D models in huge multimedia databases. This book is devoted to partially solving the above issues. Compression is useful because it helps reduce the consumption of expensive resources, such as hard disk space and transmission bandwidth. On the downside, compressed data must be decompressed to be used, and this extra processing may be detrimental to some applications. 3D polygonal mesh (with geometry, color, normal vector and texture coordinate information), as a common surface representation, is now heavily used in various multimedia applications such as computer games, animations and simulation applications. To maintain a convincing level of realism, many applications require highly detailed mesh models. However, such complex models demand broad network bandwidth and much storage capacity to transmit and store. To address these problems, 3D mesh compression is essential for reducing the size of 3D model representation.