John M. Gottman, Gottman John M.
Time-Series Analysis
A Comprehensive Introduction for Social Scientists
John M. Gottman, Gottman John M.
Time-Series Analysis
A Comprehensive Introduction for Social Scientists
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book is a comprehensive introduction to all the major time-series techniques, both time-domain and frequency-domain.
Andere Kunden interessierten sich auch für
- Donald B. PercivalSpectral Analysis for Univariate Time Series98,99 €
- Donald B. PercivalWavelet Methods for Time Series Analysis81,99 €
- J. K. LindseyStatistical Analysis of Stochastic Processes in Time126,99 €
- Andrew C. HarveyForecasting, Structural Time Series Models & the Kalman Filter166,99 €
- Gregory C. ReinselElements of Multivariate Time Series Analysis42,99 €
- Monday Osagie AdenomonAn Introduction to Univariate and Multiple Time Series Analysis with R44,99 €
- Tigist Mideksa DamesaA Multivariate Time Series Analysis of Agrometeorological Data35,99 €
-
-
-
This book is a comprehensive introduction to all the major time-series techniques, both time-domain and frequency-domain.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 420
- Erscheinungstermin: 31. Oktober 2008
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 679g
- ISBN-13: 9780521103367
- ISBN-10: 0521103363
- Artikelnr.: 25855660
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 420
- Erscheinungstermin: 31. Oktober 2008
- Englisch
- Abmessung: 229mm x 152mm x 25mm
- Gewicht: 679g
- ISBN-13: 9780521103367
- ISBN-10: 0521103363
- Artikelnr.: 25855660
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Preface
Part I. Overview: 1. The search for hidden structures
2. The ubiquitous cycles
3. How Slutzky created order from chaos
4 Forecasting: Yule's autoregressive models
5. Into the black box with white light
6. Experimentation and change
Part II. Time-series models: 7. Models and the problem of correlated data
8. An introduction to time-series models: stationarity
9. What if the data are not stationary?
Part III. Deterministic and nondeterministic components: 10. Moving-average models
11. Autoregressive models
12. The complex behaviour of the second-order autoregressive process
13. The partial autocorrelation function: completing the duality
14. The duality of MA and AR processes
Part IV. Stationary frequency-domain models: 15. The spectral density function
16. The periodogram
17. Spectral windows and window carpentry
18. Explanation of the Slutzky effect
Part V. Estimation in the time domain: 19. AR model fitting and estimation
20. Box-Jenkins model fitting: the ARIMA models
21. Forecasting
22. Model fitting: worked example
Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
24. Bivariate frequency example: mother-infant play
25. Bivariate time-domain analysis
Part VII. Other Techniques: 26. The interrupted time-series experiment
27. Multivariate approaches
Notes
References
Index.
Part I. Overview: 1. The search for hidden structures
2. The ubiquitous cycles
3. How Slutzky created order from chaos
4 Forecasting: Yule's autoregressive models
5. Into the black box with white light
6. Experimentation and change
Part II. Time-series models: 7. Models and the problem of correlated data
8. An introduction to time-series models: stationarity
9. What if the data are not stationary?
Part III. Deterministic and nondeterministic components: 10. Moving-average models
11. Autoregressive models
12. The complex behaviour of the second-order autoregressive process
13. The partial autocorrelation function: completing the duality
14. The duality of MA and AR processes
Part IV. Stationary frequency-domain models: 15. The spectral density function
16. The periodogram
17. Spectral windows and window carpentry
18. Explanation of the Slutzky effect
Part V. Estimation in the time domain: 19. AR model fitting and estimation
20. Box-Jenkins model fitting: the ARIMA models
21. Forecasting
22. Model fitting: worked example
Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
24. Bivariate frequency example: mother-infant play
25. Bivariate time-domain analysis
Part VII. Other Techniques: 26. The interrupted time-series experiment
27. Multivariate approaches
Notes
References
Index.
Preface
Part I. Overview: 1. The search for hidden structures
2. The ubiquitous cycles
3. How Slutzky created order from chaos
4 Forecasting: Yule's autoregressive models
5. Into the black box with white light
6. Experimentation and change
Part II. Time-series models: 7. Models and the problem of correlated data
8. An introduction to time-series models: stationarity
9. What if the data are not stationary?
Part III. Deterministic and nondeterministic components: 10. Moving-average models
11. Autoregressive models
12. The complex behaviour of the second-order autoregressive process
13. The partial autocorrelation function: completing the duality
14. The duality of MA and AR processes
Part IV. Stationary frequency-domain models: 15. The spectral density function
16. The periodogram
17. Spectral windows and window carpentry
18. Explanation of the Slutzky effect
Part V. Estimation in the time domain: 19. AR model fitting and estimation
20. Box-Jenkins model fitting: the ARIMA models
21. Forecasting
22. Model fitting: worked example
Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
24. Bivariate frequency example: mother-infant play
25. Bivariate time-domain analysis
Part VII. Other Techniques: 26. The interrupted time-series experiment
27. Multivariate approaches
Notes
References
Index.
Part I. Overview: 1. The search for hidden structures
2. The ubiquitous cycles
3. How Slutzky created order from chaos
4 Forecasting: Yule's autoregressive models
5. Into the black box with white light
6. Experimentation and change
Part II. Time-series models: 7. Models and the problem of correlated data
8. An introduction to time-series models: stationarity
9. What if the data are not stationary?
Part III. Deterministic and nondeterministic components: 10. Moving-average models
11. Autoregressive models
12. The complex behaviour of the second-order autoregressive process
13. The partial autocorrelation function: completing the duality
14. The duality of MA and AR processes
Part IV. Stationary frequency-domain models: 15. The spectral density function
16. The periodogram
17. Spectral windows and window carpentry
18. Explanation of the Slutzky effect
Part V. Estimation in the time domain: 19. AR model fitting and estimation
20. Box-Jenkins model fitting: the ARIMA models
21. Forecasting
22. Model fitting: worked example
Part VI. Bivariate time-series analysis: 23. Bivariate frequency-domain analysis
24. Bivariate frequency example: mother-infant play
25. Bivariate time-domain analysis
Part VII. Other Techniques: 26. The interrupted time-series experiment
27. Multivariate approaches
Notes
References
Index.