50,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
25 °P sammeln
  • Broschiertes Buch

Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline.
The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology.
However, the
…mehr

Produktbeschreibung
Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline.

The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology.

However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists.

This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula.
Autorenporträt
Anshul Gupta is a Principal Research Staff Member in Mathematical Sciences department at IBM T.J. Watson Research Center. His research interests include sparse matrix computations and their applications in optimization and computational sciences, parallel algorithms, and graph/combinatorial algorithms for scientific computing. He has coauthored several journal articles and conference papers on these topics and a textbook titled "Introduction to Parallel Computing." He is the primary author of Watson Sparse Matrix Package (WSMP), one of the most robust and scalable parallel direct solvers for large sparse systems of linear equations.
Rezensionen
"Providing practical assistance for adding parallel programming at an early stage to undergraduate students in computer science is the aim of this book." --Computing Reviews