21,99 €
inkl. MwSt.

Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Symmetry has a strong impact on the number and shape ofsolutions to variational problems. This has been observed,for instance, in the search for periodic solutions ofHamiltonian systems or of the nonlinear wave equation; whenone is interested in elliptic equations on symmetric domainsor in the corresponding semiflows; and when one is lookingfor "special" solutions of these problems.This book is concerned with Lusternik-Schnirelmann theoryand Morse-Conley theory for group invariant functionals.These topological methods are developed in detail with newcalculations of the equivariant…mehr

Produktbeschreibung
Symmetry has a strong impact on the number and shape ofsolutions to variational problems. This has been observed,for instance, in the search for periodic solutions ofHamiltonian systems or of the nonlinear wave equation; whenone is interested in elliptic equations on symmetric domainsor in the corresponding semiflows; and when one is lookingfor "special" solutions of these problems.This book is concerned with Lusternik-Schnirelmann theoryand Morse-Conley theory for group invariant functionals.These topological methods are developed in detail with newcalculations of the equivariant Lusternik-Schnirelmanncategory and versions of the Borsuk-Ulam theorem for verygeneral classes of symmetry groups. The Morse-Conley theoryis applied to bifurcation problems, in particular to thebifurcation of steady states and hetero-clinic orbits ofO(3)-symmetric flows; and to the existence of periodicsolutions nearequilibria of symmetric Hamiltonian systems.Some familiarity with the usualminimax theory and basicalgebraic topology is assumed.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr. Thomas Bartsch promovierte bei Prof. Dr. A. Drexl am Institut für Betriebswirtschaftslehre der Universität Kiel. Er ist als Software-Entwickler bei der SAP AG in Walldorf tätig.