117,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the…mehr

Produktbeschreibung
Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems.
In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.
Rezensionen
From the book reviews:

"Three major goals for this book: firstly to show that topological invariants provide qualitative information about signals that is both relevant and practical, second to show that the signal processing concepts of filtering, detection, and noise correspond respectively to the concepts of sheaves, functoriality and sequences, and third to advocate for the use of sheaf theory in signal processing. ... The target audience is practitioners so that the theoretical notions are covered with the practitioner in mind with motivations emphasized." (Jonathan Hodgson, zbMATH, Vol. 1294, 2014)