22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
11 °P sammeln
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! En mathématiques, la topologie d'un espace vectoriel de dimension finie sur un corps K est, sous certaines hypothèses, un cas particulier de topologie d'espace vectoriel normé. Le prototype est Rn muni de la norme qui à un n-uplet de réels associe la plus grande des valeurs absolues de ces n réels. Un espace vectoriel E de dimension finie n sur un corps K (par exemple sur K=le corps R des réels) peut toujours être identifié à Kn par le choix arbitraire d'un isomorphisme entre ces deux espaces vectoriels (ou, ce qui est équivalent, par le choix d'une…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
High Quality Content by WIKIPEDIA articles! En mathématiques, la topologie d'un espace vectoriel de dimension finie sur un corps K est, sous certaines hypothèses, un cas particulier de topologie d'espace vectoriel normé. Le prototype est Rn muni de la norme qui à un n-uplet de réels associe la plus grande des valeurs absolues de ces n réels. Un espace vectoriel E de dimension finie n sur un corps K (par exemple sur K=le corps R des réels) peut toujours être identifié à Kn par le choix arbitraire d'un isomorphisme entre ces deux espaces vectoriels (ou, ce qui est équivalent, par le choix d'une base de E). Tous les énoncés ci-dessous concernant Kn s'étendent ipso facto à un tel E (muni de la topologie transportée de celle de Kn par un tel isomorphisme).