Ulrike Tillmann (ed.)
Topology, Geometry and Quantum Field Theory
Proceedings of the 2002 Oxford Symposium in the Honour of the 60th Birthday of Graeme Segal
Herausgeber: Tillmann, Ulrike
Ulrike Tillmann (ed.)
Topology, Geometry and Quantum Field Theory
Proceedings of the 2002 Oxford Symposium in the Honour of the 60th Birthday of Graeme Segal
Herausgeber: Tillmann, Ulrike
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Visionary articles explaining approaches to important problems on the interface of pure mathematics and mathematical physics.
Andere Kunden interessierten sich auch für
- Quantum Dynamics of Simple Systems181,99 €
- Rosolino Buccheri / et.al.Endophysics, Time, Quantum and the Subjective - Proceedings of the Zif Interdisciplinary Research Workshop277,99 €
- Aspects of Quantum Theory64,99 €
- Quantum Theory and Beyond68,99 €
- J. M. ZimanElements of Advanced Quantum Theory86,99 €
- Daniel W. GrahamPhilosophical Foundations of Quantum Field Theory81,99 €
- Vladimir B. BraginskyQuantum Measurement78,99 €
-
-
-
Visionary articles explaining approaches to important problems on the interface of pure mathematics and mathematical physics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 590
- Erscheinungstermin: 3. September 2010
- Englisch
- Abmessung: 229mm x 152mm x 34mm
- Gewicht: 945g
- ISBN-13: 9780521540490
- ISBN-10: 0521540496
- Artikelnr.: 20991765
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 590
- Erscheinungstermin: 3. September 2010
- Englisch
- Abmessung: 229mm x 152mm x 34mm
- Gewicht: 945g
- ISBN-13: 9780521540490
- ISBN-10: 0521540496
- Artikelnr.: 20991765
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Part I. Contributions: 1. A variant of K-theory Michael Atiyah and Michael
Hopkins; 2. Two-vector bundles and forms of elliptic cohomology Nils Baas,
Bjorn Dundas and John Rognes; 3. Geometric realisation of the
Segal-Sugawara construction David Ben-Zvi and Edward Frenkel; 4.
Differential isomorphism and equivalence of algebraic varieties Yuri Berest
and George Wilson; 5. A polarized view of string topology Ralph Cohen and
Veronique Godin; 6. Random matrices and Calabi-Yau geometry Robbert
Dijkgraaf; 7. A survey of the topological properties of symplectomorphism
groups Dusa McDuff; 8. K-theory from a physical perspective Gregory Moore;
9. Heisenberg groups and algebraic topology Jack Morava; 10. What is an
elliptic object? Stephan Stolz and Peter Teichner; 11. Open and closed
string field theory interpreted in classical algebraic topology Dennis
Sullivan; 12. K-theory of the moduli of principal bundles on a surface and
deformations of the Verlinde algebra Constantin Teleman; 13. Cohomology of
the stable mapping class group Michael S. Weiss; 14. Conformal field theory
in four and six dimensions Edward Witten; Part II. The Definition of
Conformal Field Theory by Graeme Segal: 15. Definition of a conformal field
theory Graeme Segal.
Hopkins; 2. Two-vector bundles and forms of elliptic cohomology Nils Baas,
Bjorn Dundas and John Rognes; 3. Geometric realisation of the
Segal-Sugawara construction David Ben-Zvi and Edward Frenkel; 4.
Differential isomorphism and equivalence of algebraic varieties Yuri Berest
and George Wilson; 5. A polarized view of string topology Ralph Cohen and
Veronique Godin; 6. Random matrices and Calabi-Yau geometry Robbert
Dijkgraaf; 7. A survey of the topological properties of symplectomorphism
groups Dusa McDuff; 8. K-theory from a physical perspective Gregory Moore;
9. Heisenberg groups and algebraic topology Jack Morava; 10. What is an
elliptic object? Stephan Stolz and Peter Teichner; 11. Open and closed
string field theory interpreted in classical algebraic topology Dennis
Sullivan; 12. K-theory of the moduli of principal bundles on a surface and
deformations of the Verlinde algebra Constantin Teleman; 13. Cohomology of
the stable mapping class group Michael S. Weiss; 14. Conformal field theory
in four and six dimensions Edward Witten; Part II. The Definition of
Conformal Field Theory by Graeme Segal: 15. Definition of a conformal field
theory Graeme Segal.
Part I. Contributions: 1. A variant of K-theory Michael Atiyah and Michael
Hopkins; 2. Two-vector bundles and forms of elliptic cohomology Nils Baas,
Bjorn Dundas and John Rognes; 3. Geometric realisation of the
Segal-Sugawara construction David Ben-Zvi and Edward Frenkel; 4.
Differential isomorphism and equivalence of algebraic varieties Yuri Berest
and George Wilson; 5. A polarized view of string topology Ralph Cohen and
Veronique Godin; 6. Random matrices and Calabi-Yau geometry Robbert
Dijkgraaf; 7. A survey of the topological properties of symplectomorphism
groups Dusa McDuff; 8. K-theory from a physical perspective Gregory Moore;
9. Heisenberg groups and algebraic topology Jack Morava; 10. What is an
elliptic object? Stephan Stolz and Peter Teichner; 11. Open and closed
string field theory interpreted in classical algebraic topology Dennis
Sullivan; 12. K-theory of the moduli of principal bundles on a surface and
deformations of the Verlinde algebra Constantin Teleman; 13. Cohomology of
the stable mapping class group Michael S. Weiss; 14. Conformal field theory
in four and six dimensions Edward Witten; Part II. The Definition of
Conformal Field Theory by Graeme Segal: 15. Definition of a conformal field
theory Graeme Segal.
Hopkins; 2. Two-vector bundles and forms of elliptic cohomology Nils Baas,
Bjorn Dundas and John Rognes; 3. Geometric realisation of the
Segal-Sugawara construction David Ben-Zvi and Edward Frenkel; 4.
Differential isomorphism and equivalence of algebraic varieties Yuri Berest
and George Wilson; 5. A polarized view of string topology Ralph Cohen and
Veronique Godin; 6. Random matrices and Calabi-Yau geometry Robbert
Dijkgraaf; 7. A survey of the topological properties of symplectomorphism
groups Dusa McDuff; 8. K-theory from a physical perspective Gregory Moore;
9. Heisenberg groups and algebraic topology Jack Morava; 10. What is an
elliptic object? Stephan Stolz and Peter Teichner; 11. Open and closed
string field theory interpreted in classical algebraic topology Dennis
Sullivan; 12. K-theory of the moduli of principal bundles on a surface and
deformations of the Verlinde algebra Constantin Teleman; 13. Cohomology of
the stable mapping class group Michael S. Weiss; 14. Conformal field theory
in four and six dimensions Edward Witten; Part II. The Definition of
Conformal Field Theory by Graeme Segal: 15. Definition of a conformal field
theory Graeme Segal.