22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! Total least squares, also known as errors in variables, rigorous least squares, or orthogonal regression, is a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression, and can be applied to both linear and non-linear models. In short, total least squares does not have the property of units-invariance (it is not scale invariant). For a meaningful model we require this property to hold. A way forward is to realise that residuals…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
High Quality Content by WIKIPEDIA articles! Total least squares, also known as errors in variables, rigorous least squares, or orthogonal regression, is a least squares data modeling technique in which observational errors on both dependent and independent variables are taken into account. It is a generalization of Deming regression, and can be applied to both linear and non-linear models. In short, total least squares does not have the property of units-invariance (it is not scale invariant). For a meaningful model we require this property to hold. A way forward is to realise that residuals (distances) measured in different units can be combined if multiplication is used instead of addition. Consider fitting a line: for each data point the product of the vertical and horizontal residuals equals twice the area of the triangle formed by the residual lines and the fitted line.