22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
11 °P sammeln
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context). The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets. A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its…mehr

Produktbeschreibung
High Quality Content by WIKIPEDIA articles! In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed "size" (where the meaning of "size" depends on the given context). The smaller the size fixed, the more subsets may be needed, but any specific size should require only finitely many subsets. A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its subsets still will be. The term precompact (or pre-compact) is sometimes used with the same meaning, but 'pre-compact' is also used to mean relatively compact. In a complete metric space these meanings coincide but in general they do not. See also use of the axiom of choice below.