182,00 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Gebundenes Buch

This authoritative handbook focuses on the science and applications of metal oxides for energy storage. It provides in-depth, application-oriented information by covering electrochemistry, morphology and both in situ and in operando characterization.

Produktbeschreibung
This authoritative handbook focuses on the science and applications of metal oxides for energy storage. It provides in-depth, application-oriented information by covering electrochemistry, morphology and both in situ and in operando characterization.
Autorenporträt
Jagjit Nanda is team leader and senior staff scientist at Oak Ridge National Laboratory, USA, working in the area of high capacity energy storage materials, interfaces and energy systems. He also holds a joint faculty appointment as a professor in the Chemical and Bio-Molecular Engineering Department, University of Tennessee, Knoxville and as a Bredesen Center Faculty between ORNL and University of Tennessee. Prior to joining Oak Ridge in 2009, Jagjit Nanda worked as a Technical Expert at the Research and Advanced Engineering Center, Ford Motor Company, MI leading R&D projects in the area of lithium-ion battery materials and nanomaterials for energy applications. He has more than 150 technical and journal publications, 40 invited talks, and a number of patents in the area of energy storage and conversion. Dr. Nanda is also an active member of a number of professional scientific societies. Veronica Augustyn is Assistant Professor of Materials Science & Engineering at North Carolina State University, USA. From 2013-2015 she was a Postdoctoral Fellow at the Texas Materials Institute at the University of Texas at Austin. She received her PhD in 2013 from the University of California, Los Angeles and her BSc in 2007 at the University of Arizona, both in Materials Science & Engineering. Her research is focused on the development and characterization of materials for electrochemical energy technologies including batteries, electrochemical capacitors, electrolyzers, and fuel cells. In particular, she is interested in the relationships between material structure and morphology and the resulting redox behavior and electrochemical mechanisms. She is the recipient of a 2017 NSF CAREER Award and a 2016 Ralph E. Powe Jr. Faculty Enhancement Award, and is a Scialog Fellow in Advanced Energy Storage from the Research Corporation for Science Advancement.