110,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Due to their sessile lifestyle, plants need to efficiently adapt to changing environmental conditions during their life cycle. Nutrient acquisition from the soil has to be able to adapt to considerable fluctuations in concentrations to ensure adequate distribution between tissues, cells and organelles. The storage and retrieval of nutrients, metabolites or toxic substances in vacuoles plays an important part in cellular homeostasis in plants. The long-range transport and maintenance of turgor is critically dependent on the availability of water and rate of evaporation, while at the same time…mehr

Produktbeschreibung
Due to their sessile lifestyle, plants need to efficiently adapt to changing environmental conditions during their life cycle. Nutrient acquisition from the soil has to be able to adapt to considerable fluctuations in concentrations to ensure adequate distribution between tissues, cells and organelles. The storage and retrieval of nutrients, metabolites or toxic substances in vacuoles plays an important part in cellular homeostasis in plants. The long-range transport and maintenance of turgor is critically dependent on the availability of water and rate of evaporation, while at the same time photosynthetic products have to be transported to all plant parts. As a result plants contain a large number of ATP-dependent pumps and secondary transporters that, in order to adapt to the changing environment, need to be regulated by a complex network of sensing and signaling mechanisms.Plants share many basic elements of signal transduction with animals, but also contain plant-specific signaling molecules and mechanisms. In this volume, the role of transporters and pumps in the regulation of movement, long-range transport and compartmentalization of water, solutes, nutrients and classical signaling molecules is highlighted, and the function, regulation and membrane-transporter interaction and their roles in plant signaling controlling plant physiology and development are discussed.