1. UV/Ozone Cleaning of Surfaces.- 1. Introduction.- 2. The Variables of UV/Ozone Cleaning.- 2.1. The Wavelengths Emitted by the UV Sources.- 2.2. Distance between the Sample and the UV Source.- 2.3. The Contaminants.- 2.4. The Precleaning.- 2.5. The Substrate.- 2.6. Rate Enhancement Techniques.- 3. The Mechanism of UV/Ozone Cleaning.- 4. UV/Ozone Cleaning in Vacuum Systems.- 5. Safety Considerations.- 6. UV/Ozone Cleaning Facility Construction.- 7. Applications.- 8. Effects Other Than Cleaning.- 8.1. Oxidation.- 8.2. UV-Enhanced Outgassing.- 8.3. Other Surface/Interface Effects.- 8.4. Etching.- 9. Summary and Conclusions.- References and Notes.- 2. Techniques for Cleaning Liquid Surfaces.- 1. Introduction.- 2. The Origin of Dynamic Liquid Surface Phenomena.- 3. The Notion of Surface Cleanliness.- 4. The History of Clean Surfaces.- 5. The Nature of Surface Contamination.- 6. Cleaning Techniques.- 6.1. Primary Distillation.- 6.2. Further Distillation.- 6.3. Bubble Cleaning.- 6.4. Surface Skimming and Talc Cleaning.- 6.5. Solid Adsorption Techniques.- 6.6. Laser Burning.- 6.7. Solution Preparation.- 6.8. Surface Cleaning in Engineering Applications.- 7. Materials for Clean-Surface Experiments.- 7.1. Principles.- 7.2. Construction of Apparatus.- 7.3. Water Storage Materials.- 8. Cleaning of Apparatus.- 8.1. ¿Hard¿ Materials¿Chromic Acid.- 8.2. Perspex¿Detergents.- 9. General Design Considerations.- 10. Summary.- References.- 3. Hydroson Cleaning of Surfaces.- 1. Introduction.- 2. The Hydroson System.- 3. Experimental Investigation of Mechanisms in the Tank.- 4. Commercial Applications of Hydroson Cleaning.- 5. Safety and Economy.- 6. Recent Developments.- 6.1. Wire Cleaning.- 6.2. Coil Strip Cleaning.- 6.3. Barrel Cleaning and Rinsing.- 6.4. Cleaning Molds in the Glass Industry.- 6.5. Nuclear Industry.- 6.6. Phosphating.- 6.7. Electrodeposition.- 7. Size and Cost of Equipment.- 8. Comparison with Ultrasonic and Megasonic Cleaning.- 9. Conclusion.- References.- 4. Methods of Measurement of Ionic Surface Contamination.- 1. Introduction.- 2. Ionic Measurement.- 3. Static Extraction Methods.- 3.1. Egan¿s Method.- 3.2. Method of Hobson and DeNoon.- 3.3. Omega Meter.- 3.4. Ion Chaser.- 3.5. Contaminometer.- 4. Dynamic Extraction Method-Ionograph.- 5. Applications of Ionic Contamination Measurements.- 6. Future Prospects.- 7. Summary.- References.- 5. Characterization of Surface Contaminants by Luminescence Using Ultraviolet Excitation.- 1. Introduction.- 2. The Luminescence Technique for Surface Detection.- 3. Applications.- 3.1. The Use of UV ¿Black Light¿ for Surface Detection.- 3.2. Study of Workers¿ Skin Contamination by the ¿Skin-Wash¿ Method.- 3.3. The Fiberoptic Luminoscope for Monitoring Occupational Skin Contamination.- 3.4. Detection of Surface Contamination with the Spill Spotter.- 3.5. Remote Sensing with Laser-Based Fluorosensors.- 3.6. A Fluorescent Tracer Detection Technique.- 3.7. Studies of Absorption of Carcinogenic Materials into Mouse Skin.- 3.8. Chromogenic and Fluorogenic Spot Test Techniques.- 3.9. Sensitized Fluorescence Spot Tests.- 3.10. Surface Detection by Room Temperature Phosphorimetry.- 4. Conclusion.- References.- 6. Particulate Surface Contamination and Device Failures.- 1. Introduction.- 2. Sources of Particulate Contamination.- 2.1. Air.- 2.2. Chemicals.- 2.3. Gases.- 2.4. Wafer Handling.- 3. Effects on Device Performance.- 3.1. Particulate Contamination on Photomasks.- 3.2. Epitaxial Growth.- 3.3. Failure Mechanism in MOS Gate Oxides.- 3.4. Impurity Contamination in Silicon.- 4. Summary.- References.- 7. Effect of Surface Contamination on the Performance of HVDC Insulators.- 1. Introduction.- 2. General Overview of the Flashover Process.- 3. Deposition of Particles.- 3.1. Introduction.- 3.2. The Electrical Environment.- 3.3. Charging Mechanisms.- 3.4. Particle Deposition Rates.- 4. Deposition of Moisture.- 5. Thermal Processes.- 6. Localized Electrical Breakdown.- 7. Discharge Growth.- 7.1. Introduction.- 7.2. Extinction Theories.- 7.3. Effect of Polarity.- 7.4. Effect of Voltage Waveform.- 7.5. Effect of the Composition of the Conducting Layer.- 7.6. Effect of Ambient Pressure.- 7.7. Effect of Ambient Temperature.- 7.8. Effect of Ambient Gas.- 8. Test Methods to Evaluate Insulator Performance.- 9. Prevention of Flashover.- 9.1. Deposition of Contamination.- 9.2. Deposition of Moisture.- 9.3. Dry-Band Formation and Electric Field Concentration.- 9.4. Localized Electrical Breakdown across the Dry Band.- 9.5. Discharge Growth.- 10. Conclusions and Future Prospects.- References.- 8. Effect of Surface Contamination on Electric Contact Performance.- 1. Introduction.- 2. Sources of Contamination.- 2.1. Oxidation and Corrosion.- 2.2. Particulates.- 2.3. Thermal Diffusion.- 2.4. Fretting.- 2.5. Manufacturing Processes.- 2.6. Outgassing and Condensation on Contact Surfaces of Volatiles from Noncontact Materials.- 3. Effects of Contamination.- 3.1. Direct.- 3.2. Indirect.- 4. Contact Resistance Probes for the Detection and Characterization of Contamination.- 4.1. Description of Probes.- 4.2. Determination of Contact Resistance.- 4.3. Modes of Operation.- 5. Summary.- References.- 9. The Role of Surface Contaminants in the Solid-State Welding of Metals.- 1. Introduction.- 2. Role of Contaminants in Preventing Solid-State Welds.- 3. Classification of Surface Contaminants.- 3.1. Inorganic Films.- 3.2. Organic Contaminants.- 3.3. Particulate Contaminants.- 4. Role of Contaminant Properties.- 4.1. Inorganic Films.- 4.2. Organic Films.- 4.3. Particulate Contaminants.- 5. Mechanisms for Elimination of Surface Barriers during Solid-State Welding.- 5.1. Thermal Mechanisms Occurring during Diffusion Welding.- 5.2. Deformation Welding.- 5.2.1. Mechanical Mechanisms.- 5.2.2. Thermal Mechanisms.- 6. Surface Preparation.- 7. Concluding Remarks.- References.- 10. Surface Contamination and Contact Electrification.- 1. Introduction.- 2. Types of Contaminants.- 2.1. Adsorbed Molecules.- 2.2. Ionic Contamination.- 2.3. Adsorbed Water.- 3. Identification of Extrinsic Traps.- 4. Effect of Contamination on the Metal.- 5. Conclusion.- References.- 11. Surface Contamination and Biomaterials.- 1. Introduction.- 2. General Principles of Surface Contamination.- 3. Review of Biomaterials Contamination Studies.- 3.1. Cleaning Agent Residues.- 3.2. Environmental Contaminants.- 3.3. Biocompatible Contaminants.- 4. Conclusions.- Acknowledgments.- References.- 12. Redispersion of Indoor Surface Contamination and Its Implications.- 1. Introduction.- 2. Measurements of the Redispersion or Resuspension Factor (K).- 3. Measurements of ¿Transferable¿ Surface Contamination.- 4. The Contribution of Resuspended Particulates to Exposure.- 5. Concluding Remarks.- Acknowledgment.- References.- 13. Application of Pellicles in Clean Surface Technology.- 1. Introduction.- 2. Pellicles in Integrated Circuit Fabrication.- 2.1. Semiconductor Fabrication by Optical Microlithography.- 2.2. Methods of Projection.- 2.3. Feature Dimensions and Performance Limits of Optical Microlithography.- 2.4. Masks and Reticles in Semiconductor Microlithography.- 2.5. Particle Contamination in Integrated Circuit Fabrication.- 2.6. Principles of Reticle/Mask Protection with Pellicles.- 2.7. Advantages Resulting from the Use of Pellicles.- 2.8. Optical Properties and Effects of Pellicles.- 2.8.1. Transmission Loss Mechanisms.- 2.8.2. Optical Lifetime.- 2.8.3. Refraction.- 2.8.4. Effects of Thickness Nonuniformity.- 2.9. Pellicle Materials and Mechanical Properties.- 2.10. Pellicle Mounting and Attachment.- 2.11. Inspection of Reticles and Masks Protected by Pellicles.- 3. Protective Films on Optical Data Storage Media.- 3.1. Principles and Methods of Optical Storage.- 3.2. Optical Data Readout and Effect of Protective Layer.- 4. Summary and Future Prospects.- References.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.