Trends in Stochastic Analysis
Herausgeber: Blath, Jochen; Scheutzow, Michael; Mörters, Peter
Trends in Stochastic Analysis
Herausgeber: Blath, Jochen; Scheutzow, Michael; Mörters, Peter
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Collection of articles on stochastic analysis written by leading experts; provides overview of recent developments and new results.
Andere Kunden interessierten sich auch für
- J. K. LindseyStatistical Analysis of Stochastic Processes in Time57,99 €
- Stochastic Analysis90,99 €
- Daniel W. StroockLectures on Stochastic Analysis46,99 €
- P. E. KoppMartingales and Stochastic Integrals63,99 €
- F. P. KellyReversibility and Stochastic Networks55,99 €
- Klaus BichtelerStochastic Integration with Jumps102,99 €
- Frank KellyStochastic Networks31,99 €
-
-
-
Collection of articles on stochastic analysis written by leading experts; provides overview of recent developments and new results.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 398
- Erscheinungstermin: 9. April 2009
- Englisch
- Abmessung: 229mm x 152mm x 21mm
- Gewicht: 575g
- ISBN-13: 9780521718219
- ISBN-10: 052171821X
- Artikelnr.: 24928396
- Verlag: Cambridge University Press
- Seitenzahl: 398
- Erscheinungstermin: 9. April 2009
- Englisch
- Abmessung: 229mm x 152mm x 21mm
- Gewicht: 575g
- ISBN-13: 9780521718219
- ISBN-10: 052171821X
- Artikelnr.: 24928396
Preface; Part I. Foundations and techniques in stochastic analysis: 1.
Random variables - without basic space Götz Kersting; 2. Chaining
techniques and their application to stochastic flows Michael Scheutzow; 3.
Ergodic properties of a class of non-Markovian processes Martin Hairer; 4.
Why study multifractal spectra? Peter Mörters; Part II. Construction,
simulation, discretisation of stochastic processes: 5, Construction of
surface measures for Brownian motion Nadia Sidorova and Olaf Wittich; 6.
Sampling conditioned diffusions Martin Hairer, Andrew Stuart and Jochen
Voß; 7. Coding and convex optimization problems Steffen Dereich; Part III.
Stochastic analysis in mathematical physics: 8. Intermittency on catalysts
Jürgen Gärtner, Frank den Hollander and Grégory Maillard; 9. Stochastic
dynamical systems in infinite dimensions Salah-Eldin A. Mohammed; 10.
Feynman formulae for evolutionary equations Oleg G.Smolyanov; 11.
Deformation quantization in infinite dimensional analysis Rémi Léandre;
Part IV. Stochastic analysis in mathematical biology: 12. Measure-valued
diffusions, coalescents and genetic inference Matthias Birkner and Jochen
Blath; 13. How often does the ratchet click? Facts, heuristics, asymptotics
Alison M. Etheridge, Peter Pfaffelhuber and Anton Wakolbinger.
Random variables - without basic space Götz Kersting; 2. Chaining
techniques and their application to stochastic flows Michael Scheutzow; 3.
Ergodic properties of a class of non-Markovian processes Martin Hairer; 4.
Why study multifractal spectra? Peter Mörters; Part II. Construction,
simulation, discretisation of stochastic processes: 5, Construction of
surface measures for Brownian motion Nadia Sidorova and Olaf Wittich; 6.
Sampling conditioned diffusions Martin Hairer, Andrew Stuart and Jochen
Voß; 7. Coding and convex optimization problems Steffen Dereich; Part III.
Stochastic analysis in mathematical physics: 8. Intermittency on catalysts
Jürgen Gärtner, Frank den Hollander and Grégory Maillard; 9. Stochastic
dynamical systems in infinite dimensions Salah-Eldin A. Mohammed; 10.
Feynman formulae for evolutionary equations Oleg G.Smolyanov; 11.
Deformation quantization in infinite dimensional analysis Rémi Léandre;
Part IV. Stochastic analysis in mathematical biology: 12. Measure-valued
diffusions, coalescents and genetic inference Matthias Birkner and Jochen
Blath; 13. How often does the ratchet click? Facts, heuristics, asymptotics
Alison M. Etheridge, Peter Pfaffelhuber and Anton Wakolbinger.
Preface; Part I. Foundations and techniques in stochastic analysis: 1.
Random variables - without basic space Götz Kersting; 2. Chaining
techniques and their application to stochastic flows Michael Scheutzow; 3.
Ergodic properties of a class of non-Markovian processes Martin Hairer; 4.
Why study multifractal spectra? Peter Mörters; Part II. Construction,
simulation, discretisation of stochastic processes: 5, Construction of
surface measures for Brownian motion Nadia Sidorova and Olaf Wittich; 6.
Sampling conditioned diffusions Martin Hairer, Andrew Stuart and Jochen
Voß; 7. Coding and convex optimization problems Steffen Dereich; Part III.
Stochastic analysis in mathematical physics: 8. Intermittency on catalysts
Jürgen Gärtner, Frank den Hollander and Grégory Maillard; 9. Stochastic
dynamical systems in infinite dimensions Salah-Eldin A. Mohammed; 10.
Feynman formulae for evolutionary equations Oleg G.Smolyanov; 11.
Deformation quantization in infinite dimensional analysis Rémi Léandre;
Part IV. Stochastic analysis in mathematical biology: 12. Measure-valued
diffusions, coalescents and genetic inference Matthias Birkner and Jochen
Blath; 13. How often does the ratchet click? Facts, heuristics, asymptotics
Alison M. Etheridge, Peter Pfaffelhuber and Anton Wakolbinger.
Random variables - without basic space Götz Kersting; 2. Chaining
techniques and their application to stochastic flows Michael Scheutzow; 3.
Ergodic properties of a class of non-Markovian processes Martin Hairer; 4.
Why study multifractal spectra? Peter Mörters; Part II. Construction,
simulation, discretisation of stochastic processes: 5, Construction of
surface measures for Brownian motion Nadia Sidorova and Olaf Wittich; 6.
Sampling conditioned diffusions Martin Hairer, Andrew Stuart and Jochen
Voß; 7. Coding and convex optimization problems Steffen Dereich; Part III.
Stochastic analysis in mathematical physics: 8. Intermittency on catalysts
Jürgen Gärtner, Frank den Hollander and Grégory Maillard; 9. Stochastic
dynamical systems in infinite dimensions Salah-Eldin A. Mohammed; 10.
Feynman formulae for evolutionary equations Oleg G.Smolyanov; 11.
Deformation quantization in infinite dimensional analysis Rémi Léandre;
Part IV. Stochastic analysis in mathematical biology: 12. Measure-valued
diffusions, coalescents and genetic inference Matthias Birkner and Jochen
Blath; 13. How often does the ratchet click? Facts, heuristics, asymptotics
Alison M. Etheridge, Peter Pfaffelhuber and Anton Wakolbinger.