First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers Herausgegeben:Goebel, Randy; Yu, Han; Faltings, Boi; Fan, Lixin; Xiong, Zehui
First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022, Revised Selected Papers Herausgegeben:Goebel, Randy; Yu, Han; Faltings, Boi; Fan, Lixin; Xiong, Zehui
This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation.
Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation.
Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497