132,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
66 °P sammeln
  • Gebundenes Buch

Revealing essential roles of the tumor microenvironment in cancer progression, this book provides a comprehensive overview of the latest research on the tumor microenvironment in over thirty human organs, including the parathyroid gland, heart, intestine, testicles, and more.
Taken alongside its companion volumes, these books update us on what we know about the different aspects of the tumor microenvironments in distinct organs as well as future directions. Tumor Microenvironments in Organs: From the Brain to the Skin - Part A is essential reading for advanced cell biology and cancer…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
Revealing essential roles of the tumor microenvironment in cancer progression, this book provides a comprehensive overview of the latest research on the tumor microenvironment in over thirty human organs, including the parathyroid gland, heart, intestine, testicles, and more.

Taken alongside its companion volumes, these books update us on what we know about the different aspects of the tumor microenvironments in distinct organs as well as future directions. Tumor Microenvironments in Organs: From the Brain to the Skin - Part A is essential reading for advanced cell biology and cancer biology students as well as researchers seeking an update on research in the tumor microenvironment.
Autorenporträt
Alexander Birbrair received his Bachelor's Biomedical degree from Santa Cruz State University in Brazil. He moved to North Carolina, where he finished his PhD in Neuroscience under the mentorship of Osvaldo Delbono. Then, he joined as a posdoc in Stem Cell Biology at Paul Frenette's laboratory at Albert Einstein School of Medicine. In 2016, he was appointed faculty at Federal University of Minas Gerais in Brazil, where he started his own lab. His laboratory is interested in understanding how the cellular components of different tissues function and control disease progression. His group explores the roles of specific cell populations in the tissue microenvironment by using state-of-the-art techniques. His research is funded by the Serrapilheira Institute, CNPq, CAPES, and FAPEMIG. In 2018, Alexander was elected affiliate member of the Brazilian Academy of Sciences (ABC), and, in 2019, he was elected member of the Global Young Academy (GYA).