32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

A finite-element model of a two-dimensional slice of human atrial tissue for the study of the electrograms and propagation of action potentials is presented. Action potential propagation is described by a reaction-diffusion model coupled with the complex Courtemanche et al. atrial cell model. The effects of recording electrode size and location on electrograms are presented. Action potential propagation as a result of atrial fibrillation ablation therapy is also modeled by defining a lesion area with decreased electrical conductivity. The effect of electrical conductivity and geometry of the…mehr

Produktbeschreibung
A finite-element model of a two-dimensional slice of human atrial tissue for the study of the electrograms and propagation of action potentials is presented. Action potential propagation is described by a reaction-diffusion model coupled with the complex Courtemanche et al. atrial cell model. The effects of recording electrode size and location on electrograms are presented. Action potential propagation as a result of atrial fibrillation ablation therapy is also modeled by defining a lesion area with decreased electrical conductivity. The effect of electrical conductivity and geometry of the lesion was also studied. It is shown that the success rate of atrial fibrillation ablation therapy is primarily correlated with the creation of continuous ablation lines and also the formation of fibrous tissue.
Autorenporträt
Samineh received the B.Sc. degree in Chemical Engineering and the M.S. degree in Biomedical Engineering from University of South Florida in 2011.