25,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! In mathematics and abstract algebra, the two-element Boolean algebra is the Boolean algebra whose underlying set (or universe or carrier) B is the Boolean domain. The elements of the Boolean domain are 1 and 0 by convention, so that B = {0, 1}. Paul Halmos's name for this algebra "2" has some following in the literature, and will be employed here.An operation of arity n is a mapping from Bn to B. Boolean algebra consists of two binary operations and unary complementation. The binary operations have been named and notated in various ways. Here they…mehr

Produktbeschreibung
High Quality Content by WIKIPEDIA articles! In mathematics and abstract algebra, the two-element Boolean algebra is the Boolean algebra whose underlying set (or universe or carrier) B is the Boolean domain. The elements of the Boolean domain are 1 and 0 by convention, so that B = {0, 1}. Paul Halmos's name for this algebra "2" has some following in the literature, and will be employed here.An operation of arity n is a mapping from Bn to B. Boolean algebra consists of two binary operations and unary complementation. The binary operations have been named and notated in various ways. Here they are called 'sum' and 'product', and notated by infix '+' and '.', respectively. Sum and product commute and associate, as in the usual algebra of real numbers. As for the order of operations, brackets are decisive if present.