F Wardle
Ultra-Precision Bearings
F Wardle
Ultra-Precision Bearings
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearing:…mehr
Andere Kunden interessierten sich auch für
- Ron PalgraveTroubleshooting Centrifugal Pumps and Their Systems279,99 €
- D AlkazrajiA Quick Guide to Pipeline Engineering81,99 €
- Ilés DudásThe Theory and Practice of Worm Gear Drives312,99 €
- Michael NealeA Guide to Wear Problems and Testing for Industry138,99 €
- Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures354,99 €
- Jacek F. GierasAxial Flux Permanent Magnet Brushless Machines121,99 €
- William E. Forsthoffer3. Forsthoffer's Rotating Equipment Handbooks200,99 €
-
-
-
Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearing: ball, hydrodynamic, aerodynamic, hydrostatic and aerostatic. The book concludes with a comparison of these types of bearing and their applications.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Elsevier Science & Technology / Woodhead Publishing
- Artikelnr. des Verlages: C2013-0-16179-X
- Seitenzahl: 442
- Erscheinungstermin: 23. Februar 2015
- Englisch
- Abmessung: 244mm x 158mm x 25mm
- Gewicht: 780g
- ISBN-13: 9780857091628
- ISBN-10: 085709162X
- Artikelnr.: 41657224
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Elsevier Science & Technology / Woodhead Publishing
- Artikelnr. des Verlages: C2013-0-16179-X
- Seitenzahl: 442
- Erscheinungstermin: 23. Februar 2015
- Englisch
- Abmessung: 244mm x 158mm x 25mm
- Gewicht: 780g
- ISBN-13: 9780857091628
- ISBN-10: 085709162X
- Artikelnr.: 41657224
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Frank Wardle is Managing Director of UPM Ltd - a research and development company specialising in Ultra Precision equipment. He has more than 30 years of practical experience in bearing research, initially with the rolling bearing companies Ransom, Hoffman and Pollard (RHP) and SKF and later with the air bearing manufacturer Loadpoint Ltd. Throughout this period he was not only responsible for research into ways of improving bearing performance, but also for developing new commercial bearing designs and some of the machinery used for their manufacture and testing.
- List of figures and tables
- Preface
- About the author
- 1. Introduction
- Abstract
- 1.1 Benefits of ultra precision bearings
- 1.2 A systems approach
- 1.3 Bearing motion error
- 1.4 Static stiffness
- 1.5 Damping
- 1.6 The bearing as a dynamic machine element
- 1.7 Thermal characteristics
- 1.8 Closure
- 1.10 Notation
- 2. Ball bearings
- Abstract
- 2.1 Scope
- 2.2 Bearing sections
- 2.3 Bearing arrangements
- 2.4 Bearing tolerances
- 2.5 Ring fits and mounting parameters
- 2.6 Ball bearing load-deflection characteristics
- 2.7 Static stiffness characteristics of ball bearings
- 2.8 Damping in ball bearings
- 2.9 Motion error
- 2.10 Power consumption and thermal distortion
- 2.11 Life and reliability
- 2.12 Closing remarks
- 2.13 Appendix 2A, Vibration forces generated by waviness on the rolling surfaces of thrust bearing ball bearings
- 2.15 Notation
- 3. Hydrostatic bearings
- Abstract
- 3.1 Introduction
- 3.2 Bearing description
- 3.3 Basic operating principles
- 3.4 Pocket geometries
- 3.5 Hydrostatic bearing arrangements
- 3.6 Types of compensation
- 3.7 Approximate load capacity and static stiffness
- 3.8 Oil flow through a narrow gap
- 3.9 Temperature dependence of oil viscosity
- 3.10 Bearing load and deflection characteristics
- 3.11 Damping
- 3.12 Motion error
- 3.13 Power consumption and heat generation
- 3.14 Reliability
- 3.16 Notation
- 4. Aerostatic bearings
- Abstract
- 4.1 Introduction
- 4.2 Bearing geometries and arrangements
- 4.3 Principle of operation
- 4.4 Types of compensation
- 4.5 Approximate load capacity and static stiffness
- 4.6 Load-deflection analysis
- 4.7 Mass flow rate of air through an orifice
- 4.8 Mass flow rate of air through a porous insert
- 4.9 Grooved and recessed bearings
- 4.10 Porous air bearings
- 4.11 Air bearing static stiffness characteristics
- 4.12 Damping and dynamic stability
- 4.13 Motion error
- 4.14 Thermal characteristics
- 4.15 Reliability
- 4.17 Notation
- 5. Hydrodynamic herringbone and spiral grooved bearings
- Abstract
- 5.1 Introduction
- 5.2 Bearing types
- 5.3 Operating principles
- 5.4 Past developments
- 5.5 Load-deflection analysis of annular thrust bearings
- 5.6 Annular thrust bearing design examples
- 5.7 Radial load-deflection analysis of herringbone grooved journal bearings
- 5.8 Load capacity and static stiffness characteristics of herringbone grooved journal bearings
- 5.9 Damping and dynamic stability
- 5.10 Motion error
- 5.11 Thermal characteristics
- 5.12 Overview
- 5.14 Notation
- 6. Aerodynamic herringbone and spiral grooved bearings
- Abstract
- 6.1 Introduction
- 6.2 Bearing types
- 6.3 Past developments
- 6.4 Static load capacity and stiffness of aerodynamic annular thrust bearings
- 6.5 Design example
- 6.6 Static load capacity and stiffness of aerodynamic herringbone grooved journal bearings
- 6.7 Example of static stiffness and load capacity
- 6.8 Damping and dynamic stability
- 6.9 Thermal characteristics
- 6.10 Overview
- 6.12 Notation
- Index
- List of figures and tables
- Preface
- About the author
- 1. Introduction
- Abstract
- 1.1 Benefits of ultra precision bearings
- 1.2 A systems approach
- 1.3 Bearing motion error
- 1.4 Static stiffness
- 1.5 Damping
- 1.6 The bearing as a dynamic machine element
- 1.7 Thermal characteristics
- 1.8 Closure
- 1.10 Notation
- 2. Ball bearings
- Abstract
- 2.1 Scope
- 2.2 Bearing sections
- 2.3 Bearing arrangements
- 2.4 Bearing tolerances
- 2.5 Ring fits and mounting parameters
- 2.6 Ball bearing load-deflection characteristics
- 2.7 Static stiffness characteristics of ball bearings
- 2.8 Damping in ball bearings
- 2.9 Motion error
- 2.10 Power consumption and thermal distortion
- 2.11 Life and reliability
- 2.12 Closing remarks
- 2.13 Appendix 2A, Vibration forces generated by waviness on the rolling surfaces of thrust bearing ball bearings
- 2.15 Notation
- 3. Hydrostatic bearings
- Abstract
- 3.1 Introduction
- 3.2 Bearing description
- 3.3 Basic operating principles
- 3.4 Pocket geometries
- 3.5 Hydrostatic bearing arrangements
- 3.6 Types of compensation
- 3.7 Approximate load capacity and static stiffness
- 3.8 Oil flow through a narrow gap
- 3.9 Temperature dependence of oil viscosity
- 3.10 Bearing load and deflection characteristics
- 3.11 Damping
- 3.12 Motion error
- 3.13 Power consumption and heat generation
- 3.14 Reliability
- 3.16 Notation
- 4. Aerostatic bearings
- Abstract
- 4.1 Introduction
- 4.2 Bearing geometries and arrangements
- 4.3 Principle of operation
- 4.4 Types of compensation
- 4.5 Approximate load capacity and static stiffness
- 4.6 Load-deflection analysis
- 4.7 Mass flow rate of air through an orifice
- 4.8 Mass flow rate of air through a porous insert
- 4.9 Grooved and recessed bearings
- 4.10 Porous air bearings
- 4.11 Air bearing static stiffness characteristics
- 4.12 Damping and dynamic stability
- 4.13 Motion error
- 4.14 Thermal characteristics
- 4.15 Reliability
- 4.17 Notation
- 5. Hydrodynamic herringbone and spiral grooved bearings
- Abstract
- 5.1 Introduction
- 5.2 Bearing types
- 5.3 Operating principles
- 5.4 Past developments
- 5.5 Load-deflection analysis of annular thrust bearings
- 5.6 Annular thrust bearing design examples
- 5.7 Radial load-deflection analysis of herringbone grooved journal bearings
- 5.8 Load capacity and static stiffness characteristics of herringbone grooved journal bearings
- 5.9 Damping and dynamic stability
- 5.10 Motion error
- 5.11 Thermal characteristics
- 5.12 Overview
- 5.14 Notation
- 6. Aerodynamic herringbone and spiral grooved bearings
- Abstract
- 6.1 Introduction
- 6.2 Bearing types
- 6.3 Past developments
- 6.4 Static load capacity and stiffness of aerodynamic annular thrust bearings
- 6.5 Design example
- 6.6 Static load capacity and stiffness of aerodynamic herringbone grooved journal bearings
- 6.7 Example of static stiffness and load capacity
- 6.8 Damping and dynamic stability
- 6.9 Thermal characteristics
- 6.10 Overview
- 6.12 Notation
- Index