5. 1. 1 Biological Rhythms and Clocks From an evolutionary perspective, the adaptation of an organism's behavior to its environment has depended on one of life's fundamental traits: biological rhythm generation. In virtually all light-sensitive organisms from cyanobacteria to humans, biological clocks adapt cyclic physiology to geophysical time with time-keeping properties in the circadian (24 h), ultradian (24 h) domains (Edmunds, 1988; Lloyd, 1998; Lloyd et al. , 2001; Lloyd and Murray, 2006; Lloyd, 2007; Pittendrigh, 1993; Sweeney and Hastings, 1960) By definition, all rhythms exhibit…mehr
5. 1. 1 Biological Rhythms and Clocks From an evolutionary perspective, the adaptation of an organism's behavior to its environment has depended on one of life's fundamental traits: biological rhythm generation. In virtually all light-sensitive organisms from cyanobacteria to humans, biological clocks adapt cyclic physiology to geophysical time with time-keeping properties in the circadian (24 h), ultradian (24 h) domains (Edmunds, 1988; Lloyd, 1998; Lloyd et al. , 2001; Lloyd and Murray, 2006; Lloyd, 2007; Pittendrigh, 1993; Sweeney and Hastings, 1960) By definition, all rhythms exhibit regular periodicities since they constitute a mechanism of timing. Timing exerted by oscillatory mechanisms are found throughout the biological world and their periods span a wide range from milliseconds, as in the action potential of n- rons and the myocytes, to the slow evolutionary changes that require thousands of generations. In this context, to understand the synchronization of a populationof coupled oscillators is an important problem for the dynamics of physiology in living systems (Aon et al. , 2007a, b; Kuramoto, 1984; Strogatz, 2003; Winfree, 1967). Circadian rhythms, the most intensively studied, are devoted to measuring daily 24 h cycles. A variety of physiological processes in a wide range of eukaryotic organisms display circadian rhythmicity which is characterized by the following major properties (Anderson et al. , 1985; Edmunds, 1988): (i) stable, autonomous (self-sustaining) oscillations having a free-running period under constant envir- mental conditions of ca.
Artikelnr. des Verlages: 12231928, 978-1-4020-8351-8
2008
Seitenzahl: 464
Erscheinungstermin: 18. September 2008
Englisch
Abmessung: 241mm x 160mm x 31mm
Gewicht: 801g
ISBN-13: 9781402083518
ISBN-10: 1402083513
Artikelnr.: 25408553
Autorenporträt
David Lloyd ist seit 1977 professioneller Comic-Zeichner und beschäftigte sich vor allem mit der Adaption von Film- und TV-Stoffen. Es folgten Veröffentlichungen von Buchserien, in den 80ern auch Buchveröffentlichungen.
Inhaltsangabe
The Molecular-Genetic-Cellular Level.- The Ultradian Clock (~40 min) in Yeast (Saccharomyces cerevisiae).- ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells' Biological Clock.- Self-Organized Intracellular Ultradian Rhythms Provide Direct Cell-Cell Communication.- Phosphorylation Dynamics in Mammalian Cells.- Is There a Mitochondrial Clock?.- Invertebrate Systems.- Ultradian and Circadian Rhythms: Experiments and Models.- Ultradian Lovesong Rhythms in Drosophila.- Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem.- Tidal Rhythms.- The Neuroendocrineal and Developmental Level.- Pulsatile Hormone Secretion: Mechanisms, Significance and Evaluation.- Ultradian Rhythms as the Dynamic Signature of Life.- The Mammalian Circadian Timekeeping System.- Ultradian and Circadian Rhythms in Human Experience.- Ultradian Cognitive Performance Rhythms During Sleep Deprivation.- High Frequency EEG and Its Relationship to Cognitive Function.- Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance.- Open Questions on Mind, Genes, Consciousness, and Behavior: The Circadian and Ultradian Rhythms of Art, Beauty, and Truth in Creativity.- Genes, Sleep and Dreams.- Epilogue: A New Vision of Life.
The Molecular-Genetic-Cellular Level.- The Ultradian Clock (~40 min) in Yeast (Saccharomyces cerevisiae).- ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells’ Biological Clock.- Self-Organized Intracellular Ultradian Rhythms Provide Direct Cell-Cell Communication.- Phosphorylation Dynamics in Mammalian Cells.- Is There a Mitochondrial Clock?.- Invertebrate Systems.- Ultradian and Circadian Rhythms: Experiments and Models.- Ultradian Lovesong Rhythms in Drosophila.- Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem.- Tidal Rhythms.- The Neuroendocrineal and Developmental Level.- Pulsatile Hormone Secretion: Mechanisms, Significance and Evaluation.- Ultradian Rhythms as the Dynamic Signature of Life.- The Mammalian Circadian Timekeeping System.- Ultradian and Circadian Rhythms in Human Experience.- Ultradian Cognitive Performance Rhythms During Sleep Deprivation.- High Frequency EEG and Its Relationship to Cognitive Function.- Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance.- Open Questions on Mind, Genes, Consciousness, and Behavior: The Circadian and Ultradian Rhythms of Art, Beauty, and Truth in Creativity.- Genes, Sleep and Dreams.- Epilogue: A New Vision of Life.
The Molecular-Genetic-Cellular Level.- The Ultradian Clock (~40 min) in Yeast (Saccharomyces cerevisiae).- ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells' Biological Clock.- Self-Organized Intracellular Ultradian Rhythms Provide Direct Cell-Cell Communication.- Phosphorylation Dynamics in Mammalian Cells.- Is There a Mitochondrial Clock?.- Invertebrate Systems.- Ultradian and Circadian Rhythms: Experiments and Models.- Ultradian Lovesong Rhythms in Drosophila.- Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem.- Tidal Rhythms.- The Neuroendocrineal and Developmental Level.- Pulsatile Hormone Secretion: Mechanisms, Significance and Evaluation.- Ultradian Rhythms as the Dynamic Signature of Life.- The Mammalian Circadian Timekeeping System.- Ultradian and Circadian Rhythms in Human Experience.- Ultradian Cognitive Performance Rhythms During Sleep Deprivation.- High Frequency EEG and Its Relationship to Cognitive Function.- Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance.- Open Questions on Mind, Genes, Consciousness, and Behavior: The Circadian and Ultradian Rhythms of Art, Beauty, and Truth in Creativity.- Genes, Sleep and Dreams.- Epilogue: A New Vision of Life.
The Molecular-Genetic-Cellular Level.- The Ultradian Clock (~40 min) in Yeast (Saccharomyces cerevisiae).- ENOX Proteins, Copper Hexahydrate-Based Ultradian Oscillators of the Cells’ Biological Clock.- Self-Organized Intracellular Ultradian Rhythms Provide Direct Cell-Cell Communication.- Phosphorylation Dynamics in Mammalian Cells.- Is There a Mitochondrial Clock?.- Invertebrate Systems.- Ultradian and Circadian Rhythms: Experiments and Models.- Ultradian Lovesong Rhythms in Drosophila.- Mid-range Ultradian Rhythms in Drosophila and the Circadian Clock Problem.- Tidal Rhythms.- The Neuroendocrineal and Developmental Level.- Pulsatile Hormone Secretion: Mechanisms, Significance and Evaluation.- Ultradian Rhythms as the Dynamic Signature of Life.- The Mammalian Circadian Timekeeping System.- Ultradian and Circadian Rhythms in Human Experience.- Ultradian Cognitive Performance Rhythms During Sleep Deprivation.- High Frequency EEG and Its Relationship to Cognitive Function.- Total Sleep Deprivation and Cognitive Performance: The Case for Multiple Sources of Variance.- Open Questions on Mind, Genes, Consciousness, and Behavior: The Circadian and Ultradian Rhythms of Art, Beauty, and Truth in Creativity.- Genes, Sleep and Dreams.- Epilogue: A New Vision of Life.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497