Ultrasound in Food Processing
Recent Advances
Herausgeber: Villamiel, Mar; Benedito, Jose; Carcel, Juan A; Montilla, Antonia; García-Pérez, José V
Ultrasound in Food Processing
Recent Advances
Herausgeber: Villamiel, Mar; Benedito, Jose; Carcel, Juan A; Montilla, Antonia; García-Pérez, José V
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Ultrasound has emerged as one of the most promising green, low-cost and easy-to-implement on-line technologies, which can be used in different disciplines. Thus, low-intensity ultrasound is recognized as a useful non-destructive and non-invasive tool for food and process quality evaluation. Ultrasound in Food Processing: Recent Advances presents the theory, principles and applications of ultrasound organized into three main sections: Fundamentals of Ultrasound looks at the main basic principles of ultrasound generation and propagation, and those phenomena related to low- and high-intensity…mehr
- Advances in Food Diagnostics228,99 €
- Food for Health in the Pacific Rim191,99 €
- BeierPreharvest and Postharvest Food Safety320,99 €
- Rosemary K NewmanBarley for Food and Health156,99 €
- Romain JeantetHandbook of Food Science and Technology 2192,99 €
- Handbook of Food Science and Technology 3192,99 €
- Advances in Food Biotechnology306,99 €
-
-
-
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 544
- Erscheinungstermin: 8. Mai 2017
- Englisch
- Abmessung: 246mm x 168mm x 28mm
- Gewicht: 1089g
- ISBN-13: 9781118964187
- ISBN-10: 1118964187
- Artikelnr.: 45542188
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 544
- Erscheinungstermin: 8. Mai 2017
- Englisch
- Abmessung: 246mm x 168mm x 28mm
- Gewicht: 1089g
- ISBN-13: 9781118964187
- ISBN-10: 1118964187
- Artikelnr.: 45542188
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Juárez 1.1 Introduction 4 1.2 Generation and Detection of Ultrasonic Waves: Basic Transducer Types 5 1.3 Basic Principles of Ultrasonic Wave Propagation 12 1.4 Basic Principles of Ultrasound Applications 15 1.4.1 Low
intensity Applications 15 1.4.2 High
intensity Effects and Applications: Power Ultrasound 18 1.5 Conclusions 23 Acknowledgments 24 References 24 Part 2 Low
intensity Ultrasound Applications 27 Section 2.1 Food and Process Control 29 2 Ultrasonic Particle Sizing in Emulsions 30 M.J. Holmes and M.J.W. Povey 2.1 Introduction 30 2.2 Definitions: Emulsions and Ultrasound 32 2.3 Theoretical Models of Ultrasound Propagation in Emulsions 35 2.4 Diffraction and Scattering 41 2.5 Multiple Scattering 44 2.6 Mode Conversions 46 2.7 Perturbation Solutions 49 2.8 Two
particle Models 53 2.9 Practical Particle Sizing Techniques 55 2.10 Conclusion 60 Acknowledgements 60 References 60 3 Ultrasonic Applications in Bakery Products 65 J. Salazar, J.A. Chávez, A. Turó, and M.J. GarciäHernández 3.1 Introduction 65 3.2 Ultrasonic Properties of Materials 67 3.2.1 Ultrasonic Velocity 68 3.2.2 Attenuation 69 3.2.3 Acoustic Impedance 69 3.3 Experimental Set
up for Ultrasonic Measurements 70 3.3.1 Bread Dough 70 3.3.2 Cake Batter 71 3.4 Experimental Results and Discussion 71 3.4.1 Wheat Dough 72 3.4.2 Rice Dough 78 3.4.3 Cake Batter 81 3.5 Discussion and Conclusion 82 References 82 4 Characterization of Pork Meat Products using Ultrasound 86 J.V. GarciäPérez, M. De Prados, and J. Benedito 4.1 Introduction 86 4.2 Ultrasonic Measurements: Devices and Parameters 89 4.3 Assessment of Fat Properties 91 4.3.1 Influence of Temperature on Ultrasonic Velocity 91 4.3.2 Classification of Meat Products by means of their Fat Melting/ Crystallization Behavior 92 4.3.3 Monitoring of Fat Melting/Crystallization 97 4.4 Composition Assessment 101 4.5 Textural Properties 104 4.6 New Trends 108 Acknowledgements 110 References 110 5 The Application of Ultrasonics for Oil Characterization 115 P. Kie
czyn
ski 5.1 Introduction 116 5.1.1 Classical Methods for the Investigation of Physicochemical Parameters of Oils and Liquid Foodstuffs 117 5.1.2 Ultrasonic Methods 117 5.1.3 High
pressure Physicochemical Properties of Oils 120 5.2 Physicochemical Parameters of Liquids (Oils) that can be Evaluated by means of Ultrasonic Methods 121 5.2.1 Ultrasonic Wave Velocity and Density Measurement 121 5.2.2 Measurement of Sound Velocity, Density, and Liquid Viscosity 124 5.3 Ultrasonic Measurements 125 5.3.1 Sound Velocity 125 5.3.2 Viscosity 128 5.3.3 Attenuation 129 5.4 Measurements of Selected Physicochemical Parameters of Oils at Elevated Pressures and Various Values of Temperature 130 5.4.1 Sound Velocity 131 5.4.2 Density 131 5.4.3 Numerical Approximation of Density and Sound Velocity 131 5.4.4 Adiabatic Compressibility 132 5.4.5 Isothermal Compressibility 133 5.4.6 Isobaric Thermal Expansion Coefficient 134 5.4.7 Specific Heat Capacity 134 5.4.8 Surface Tension 134 5.4.9 Investigation of High
pressure Phase Transitions in Oils by Ultrasonic Methods 135 5.5 Conclusions 138 List of Symbols 139 References 141 6 Bioprocess Monitoring using Low
intensity Ultrasound: Measuring Transformations in Liquid Compositions 146 L. Elvira, P. Resa, P. Castro, S. Kant Shukla, C. Sierra, C. Aparicio, C. Durán, and F. Montero de Espinosa 6.1 Introduction 147 6.2 Physical Models for Bioprocess
related Media 149 6.2.1 Modelling the Medium 149 6.2.2 Modelling the Bioprocess: Obtaining Information about the Medium Composition 154 6.3 Ultrasonic Measurement Techniques for Bioprocess Monitoring and Instrumentation 156 6.3.1 Measurement Based on Pulsed
wave Techniques 156 6.3.2 Measurement Based on Resonance Techniques 158 6.3.3 Control of External Conditions: Temperature and Pressure 161 6.4 Applications of Ultrasonic Technologies to Bioprocess Monitoring 161 6.4.1 Enzymatic Processes 161 6.4.2 Fermentative Processes 165 6.4.3 Microbial Growth 168 References 171 Section 2.2 New Trends in Ultrasonic Non
destructive Testing 175 7 Air
coupled Ultrasonic Transducers 176 T.E. Gomez Alvarez
Arenas 7.1 Introduction 177 7.1.1 Low
frequency (<60 kHz), High
power Transducers 177 7.1.2 Low to Medium Frequency (<120 kHz), Relatively Low
power Transducers 177 >100 kHz), Relatively Low
power Transducers 178 7.2 High
frequency Transduction Technologies 178 7.2.1 Capacitive Transducers 179 7.2.2 Piezoelectric Transducers 179 7.2.3 Ferroelectret Polymer Film Transducers 182 >100 kHz) Ultrasonic Air
coupled Transducers 183 7.4 Design Criteria for High
frequency Air
coupled Transducers 187 7.4.1 Requirements Imposed by the Sample Insertion Loss 187 7.4.2 Main Design Parameters 191 >100 kHz) Air
coupled Piezoelectric Transducers 196 7.5.1 Materials Selection 196 7.5.2 The Ideal Piezoelectric Air
coupled Transducer 200 7.5.3 The Realistic Piezoelectric Air
coupled Transducer 201 7.5.4 Why can Piezoelectric Transducers not be Designed Following the Optimum Design? 206 7.5.5 Realistic Alternatives for the Design of Air
coupled Piezoelectric Transducers 207 7.5.6 Optimization under Realistic Constraints: The ML Detuning Technique 209 7.6 High
frequency and Wideband Piezoelectric Transducers: Realizations in the Frequency Range 0.20-2.0 MHz 213 7.7 Focusing Techniques 216 7.7.1 Geometrically Focused Transducer Aperture 217 7.7.2 Fresnel Zone Plates 217 7.7.3 Off
axis Parabolic Mirror 218 References 218 8 Acoustic Microscopy 229 N.J. Watson, M.J.W. Povey, and N.G. Parker 8.1 Introduction 230 8.2 Acoustic Microscope Theory 231 8.3 Acoustic Contrast 232 8.4 Focusing 233 8.5 Spatial Resolution 235 8.6 Temperature Effects 237 8.7 Generation of an Acoustic Image 238 8.8 Components and Operation of an Acoustic Microscope 238 8.8.1 Transducer 238 8.8.2 Sample Unit 242 8.8.3 Positioning System 244 8.8.4 Pulser and Receiver 244 8.8.5 Control Software 244 8.8.6 Sample Preparation and Operating Considerations 244 8.9 Combination of Acoustic Microscopy with other Techniques 245 8.10 Uses of Acoustic Microscopes in the Food Industry 245 8.11 Future Trends for Acoustic Microscopes in the Food Industry 249 8.11.1 Reduced Scanning Time 250 8.11.2 Easier Sample Preparation 250 8.11.3 Non
immersion Operation 250 8.11.4 Non
contact Scanning 250 8.12 Additional Resources 250 Acknowledgements 250 References 251 Part 3 High
intensity Ultrasound Applications 255 Section 3.1 Ultrasound Applications in Liquid Systems 257 9 The Use of Ultrasound for the Inactivation of Microorganisms and Enzymes 258 Cristina Arroyo and James G. Lyng 9.1 Introduction 259 9.2 Microbial Inactivation by Ultrasound 259 9.2.1 A Hint of History 259 9.2.2 Mode of Action and Structural Studies 260 9.2.3 Kinetics of Inactivation 264 9.2.4 Factors Affecting the Lethal Effect of Ultrasound 264 9.2.5 Ultrasound in Combination with other Hurdles 272 9.3 Enzyme Inactivation by Ultrasound 272 9.3.1 Alkaline Phosphatase (EC Number 3.1.3.1) 273 9.3.2 Lactoperoxidase (EC Number 1.11.1.7) 274 9.3.3 Lipase (EC number 3.1.1.3) 274 9.3.4 Lipoxygenase (EC Number 1.13.11.12) 275 9.3.5 Pectin Methylesterase (EC Number 3.1.1.11) 275 9.3.6 Peroxidases (EC Number 1.11.1.7) 276 9.3.7 Polyphenol Oxidases (EC Number 1.14.18.1) 277 9.3.8 Proteases 277 9.4 Conclusions and Future Trends 278 References 278 10 Ultrasonic Preparation of Food Emulsions 287 A. Shanmugam and M. Ashokkumar 10.1 Introduction 287 10.2 Formation of Emulsions 288 10.3 Conventional Emulsification Techniques 290 10.4 Ultrasonic Emulsification 292 10.5 Factors Affecting Sono
emulsification 293 10.5.1 Sonication Frequency 293 10.5.2 Sonication Power 294 10.5.3 Solution Temperature 295 10.5.4 Sonication Time 295 10.6 Role of Food Additives during Emulsification 295 10.6.1 Emulsifiers 295 10.6.2 Stabilizers 296 10.7 Case Studies on Ultrasonic Emulsification 297 10.8 Advantages of US over Other Emulsification Techniques 302 10.9 Conclusions 306 References 306 11 Osmotic Dehydration and Blanching: Ultrasonic Pre
treatments 311 Fabiano A.N. Fernandes and Sueli Rodrigues 11.1 Introduction 312 11.2 Fundamentals 312 11.3 Tissue Structure 315 11.4 Pre
treatment Equipments 315 11.5 Mass Balances 315 11.5.1 Fick's Law 315 11.5.2 Mass Transfer Model 317 11.5.3 Correlations 318 11.5.4 Water Loss and Sugar Gain 318 11.6 Osmotic Solutes 319 11.6.1 Binary Solutions 319 11.6.2 Ternary Solutions 320 11.7 Operating Conditions 320 11.7.1 Ultrasound Frequency 320 11.7.2 Osmotic Solution Concentration 321 11.7.3 Temperature 321 11.7.4 Immersion Time 321 11.8 Preservation 321 11.9 Quality Aspects 322 11.9.1 Vitamin C Content 322 11.9.2 Phenolics and Carotenoid Content 323 11.9.3 Sensory Evaluation 323 11.9.4 Color 323 11.9.5 Mechanical Behavior 324 References 325 12 Ultrasonically Assisted Extraction in Food Processing and the Challenges of Integrating Ultrasound into the Food Industry 329 T.J. Mason and M. Vinatoru 12.1 General Introduction 330 12.2 Extraction Methods for Food Technology 331 12.2.1 Conventional Methods 331 12.2.2 Non
conventional Methods 331 12.2.3 Ultrasonically Assisted Extraction 332 12.2.4 Conclusions 341 12.3 The Challenges of Integrating Ultrasound in the Food Industry 341 12.3.1 The Scale
up of Liquid Processing 343 12.4 Concluding Remarks 349 References 350 Section 3.2 Ultrasound Applications in Gas and Supercritical Fluids Systems 354 13 Ultrasonic Levitation Technologies 355 K. Nakamura 13.1 Introduction 355 13.2 Near
field Acoustic Levitation of a Planer Object 356 13.2.1 Overview of Near
field Acoustic Levitation 356 13.2.2 Model of Levitation 357 13.2.3 Levitation of Large Plate 359 13.3 Non
contact Transport of a Glass Plate 360 13.3.1 Combination with a Motorized Stage 360 13.3.2 Horizontal Force 360 13.3.3 Non
contact Transport Utilizing Traveling Wave Vibrations 361 13.3.4 Large
scale Transporter 363 13.4 Levitation of Droplets in Standing Wave Field in Air 364 13.5 Non
contact Manipulation of a Small Particle or Droplet in Air 366 13.5.1 High
speed Transport of Particle/Droplet 366 13.5.2 Step
by
step Transport 367 13.5.3 Contactless Mixing of Two Droplets 368 13.6 Summary 369 References 369 14 Ultrasonically Assisted Drying 371 J.A. Cárcel, J.V. GarciäPérez, E. Riera, C. Rosselló, and A. Mulet 14.1 Introduction 372 14.2 Why Ultrasound can Intensify Drying Processes 373 14.3 Application of Ultrasound in Gas Media 373 14.4 Influence of Process Variables on the Ultrasonically Assisted Drying Rate 375 14.4.1 Drying Temperature 375 14.4.2 Air Velocity 376 14.4.3 Applied Ultrasonic Power 377 14.4.4 Product Structure 378 14.5 Influence of Ultrasound Application on the Quality of Dried Products 380 14.5.1 Microstructure 380 14.5.2 Physical Properties of Dried Materials 383 14.5.3 Chemical Composition 384 14.6 Main Conclusions and Research Trends 388 Acknowledgements 388 References 388 15 Microbial and Enzyme Inactivation by Ultrasound
assisted Supercritical Fluids 392 C. Ortuño and J. Benedito 15.1 Introduction 393 15.2 Microbial and Enzyme Inactivation by High
power Ultrasound 393 15.3 Microbial and Enzyme Inactivation by Supercritical Carbon Dioxide 394 15.3.1 Microbial Inactivation Mechanisms by SC
CO2 394 15.3.2 Factors Affecting SC
CO2 Microbial Inactivation 396 15.3.3 Mechanisms and Factors in the SC
CO2 Enzyme Inactivation 399 15.4 Combination of HPU and SC
CO2 for Microbial/Enzyme Inactivation 400 15.4.1 Synergistic Effect of HPU in the SC
CO2 Inactivation Process 400 15.4.2 Effect of Temperature, Pressure, and Culture Media on SC
CO2+HPU Treatments 402 15.4.4 Effect of the Type of Microorganism/Enzyme 411 15.5 Conclusions 412 15.6 Recommendations 412 Acknowledgements 413 References 413 Section 3.3 Effect of Ultrasound on Food Constituents 417 16 Impact of High
intensity Ultrasound on Protein Structure and Functionality during Food Processing 418 M. Corzo
Martínez, M. Villamiel, and F. Javier Moreno 16.1 Introduction 418 16.2 Effect of High
intensity Ultrasound on Protein Structure and the Physicochemical Properties of Food Proteins 420 16.3 Effect of High
intensity Ultrasound on the Technological Properties of Food Proteins 423 16.4 Effect of High
intensity Ultrasound on Protein Glycation by the Maillard Reaction 426 16.5 Effect of High
intensity Ultrasound on the Biological Properties of Food Proteins 428 16.6 Conclusions and Future Trends 430 Acknowledgements 431 References 431 17 Ultrasound Effects on Processes and Reactions Involving Carbohydrates 437 A.C. Soria, M. Villamiel, and A. Montilla 17.1 Introduction 438 17.2 Sonophysical Effects 439 17.2.1 Depolymerization 439 17.2.2 Effects of Ultrasound on Functional Properties of Carbohydrates 441 17.2.3 Use of Ultrasound in Carbohydrate Chemistry 443 17.2.4 Crystallization 444 17.3 Sonochemical Effects on Carbohydrate Depolymerization 446 17.4 Effects of Ultrasound on Biotechnological Processes 448 17.4.1 Depolymerization 449 17.4.2 Other Bioprocesses 453 17.5 Conclusions and Future Trends 457 Acknowledgements 458 References 458 18 Effect of Ultrasound on the Physicochemical Properties of Lipids 464 S. Martini 18.1 Introduction 464 18.2 Background 465 18.2.1 Definition of Ultrasound 465 18.2.2 Mechanism of Action of HIU 466 18.3 Modifying the Physical Properties of Lipids with HIU 467 18.3.1 Effect on the Induction Times of Crystallization 468 18.3.2 Effect on Microstructure 468 18.3.3 Effect on Solid Fat Content 472 18.3.4 Effect on Texture and Viscoelasticity 474 18.3.5 Effect on Melting Profile 475 18.3.6 Effect on Polymorphism 476 18.3.7 Effect on Phase Separation 477 18.3.8 Combination with Other Process Variables 477 18.3.9 Effect on Oxidation 478 18.3.10 Use of HIU in a Flow Cell 480 18.4 Concluding Remarks and Future Research 480 Acknowledgments 482 References 482 19 Effect of Ultrasound on Anthocyanins 485 J.A. Moses, G. Rajauria, and B.K. Tiwari 19.1 Introduction 485 19.2 Anthocyanins: Chemistry and Sources 489 19.3 Degradation of Anthocyanins 490 19.4 Ultrasound
assisted Extraction and Processing of Anthocyanins 491 19.5 Effect of Sonication on Anthocyanins 492 19.6 Mechanism of Anthocyanin Degradation 494 19.7 Kinetics of Anthocyanin Degradation 496 19.8 Conclusions 498 References 499 Epilogue 506 Index 508
Juárez 1.1 Introduction 4 1.2 Generation and Detection of Ultrasonic Waves: Basic Transducer Types 5 1.3 Basic Principles of Ultrasonic Wave Propagation 12 1.4 Basic Principles of Ultrasound Applications 15 1.4.1 Low
intensity Applications 15 1.4.2 High
intensity Effects and Applications: Power Ultrasound 18 1.5 Conclusions 23 Acknowledgments 24 References 24 Part 2 Low
intensity Ultrasound Applications 27 Section 2.1 Food and Process Control 29 2 Ultrasonic Particle Sizing in Emulsions 30 M.J. Holmes and M.J.W. Povey 2.1 Introduction 30 2.2 Definitions: Emulsions and Ultrasound 32 2.3 Theoretical Models of Ultrasound Propagation in Emulsions 35 2.4 Diffraction and Scattering 41 2.5 Multiple Scattering 44 2.6 Mode Conversions 46 2.7 Perturbation Solutions 49 2.8 Two
particle Models 53 2.9 Practical Particle Sizing Techniques 55 2.10 Conclusion 60 Acknowledgements 60 References 60 3 Ultrasonic Applications in Bakery Products 65 J. Salazar, J.A. Chávez, A. Turó, and M.J. GarciäHernández 3.1 Introduction 65 3.2 Ultrasonic Properties of Materials 67 3.2.1 Ultrasonic Velocity 68 3.2.2 Attenuation 69 3.2.3 Acoustic Impedance 69 3.3 Experimental Set
up for Ultrasonic Measurements 70 3.3.1 Bread Dough 70 3.3.2 Cake Batter 71 3.4 Experimental Results and Discussion 71 3.4.1 Wheat Dough 72 3.4.2 Rice Dough 78 3.4.3 Cake Batter 81 3.5 Discussion and Conclusion 82 References 82 4 Characterization of Pork Meat Products using Ultrasound 86 J.V. GarciäPérez, M. De Prados, and J. Benedito 4.1 Introduction 86 4.2 Ultrasonic Measurements: Devices and Parameters 89 4.3 Assessment of Fat Properties 91 4.3.1 Influence of Temperature on Ultrasonic Velocity 91 4.3.2 Classification of Meat Products by means of their Fat Melting/ Crystallization Behavior 92 4.3.3 Monitoring of Fat Melting/Crystallization 97 4.4 Composition Assessment 101 4.5 Textural Properties 104 4.6 New Trends 108 Acknowledgements 110 References 110 5 The Application of Ultrasonics for Oil Characterization 115 P. Kie
czyn
ski 5.1 Introduction 116 5.1.1 Classical Methods for the Investigation of Physicochemical Parameters of Oils and Liquid Foodstuffs 117 5.1.2 Ultrasonic Methods 117 5.1.3 High
pressure Physicochemical Properties of Oils 120 5.2 Physicochemical Parameters of Liquids (Oils) that can be Evaluated by means of Ultrasonic Methods 121 5.2.1 Ultrasonic Wave Velocity and Density Measurement 121 5.2.2 Measurement of Sound Velocity, Density, and Liquid Viscosity 124 5.3 Ultrasonic Measurements 125 5.3.1 Sound Velocity 125 5.3.2 Viscosity 128 5.3.3 Attenuation 129 5.4 Measurements of Selected Physicochemical Parameters of Oils at Elevated Pressures and Various Values of Temperature 130 5.4.1 Sound Velocity 131 5.4.2 Density 131 5.4.3 Numerical Approximation of Density and Sound Velocity 131 5.4.4 Adiabatic Compressibility 132 5.4.5 Isothermal Compressibility 133 5.4.6 Isobaric Thermal Expansion Coefficient 134 5.4.7 Specific Heat Capacity 134 5.4.8 Surface Tension 134 5.4.9 Investigation of High
pressure Phase Transitions in Oils by Ultrasonic Methods 135 5.5 Conclusions 138 List of Symbols 139 References 141 6 Bioprocess Monitoring using Low
intensity Ultrasound: Measuring Transformations in Liquid Compositions 146 L. Elvira, P. Resa, P. Castro, S. Kant Shukla, C. Sierra, C. Aparicio, C. Durán, and F. Montero de Espinosa 6.1 Introduction 147 6.2 Physical Models for Bioprocess
related Media 149 6.2.1 Modelling the Medium 149 6.2.2 Modelling the Bioprocess: Obtaining Information about the Medium Composition 154 6.3 Ultrasonic Measurement Techniques for Bioprocess Monitoring and Instrumentation 156 6.3.1 Measurement Based on Pulsed
wave Techniques 156 6.3.2 Measurement Based on Resonance Techniques 158 6.3.3 Control of External Conditions: Temperature and Pressure 161 6.4 Applications of Ultrasonic Technologies to Bioprocess Monitoring 161 6.4.1 Enzymatic Processes 161 6.4.2 Fermentative Processes 165 6.4.3 Microbial Growth 168 References 171 Section 2.2 New Trends in Ultrasonic Non
destructive Testing 175 7 Air
coupled Ultrasonic Transducers 176 T.E. Gomez Alvarez
Arenas 7.1 Introduction 177 7.1.1 Low
frequency (<60 kHz), High
power Transducers 177 7.1.2 Low to Medium Frequency (<120 kHz), Relatively Low
power Transducers 177 >100 kHz), Relatively Low
power Transducers 178 7.2 High
frequency Transduction Technologies 178 7.2.1 Capacitive Transducers 179 7.2.2 Piezoelectric Transducers 179 7.2.3 Ferroelectret Polymer Film Transducers 182 >100 kHz) Ultrasonic Air
coupled Transducers 183 7.4 Design Criteria for High
frequency Air
coupled Transducers 187 7.4.1 Requirements Imposed by the Sample Insertion Loss 187 7.4.2 Main Design Parameters 191 >100 kHz) Air
coupled Piezoelectric Transducers 196 7.5.1 Materials Selection 196 7.5.2 The Ideal Piezoelectric Air
coupled Transducer 200 7.5.3 The Realistic Piezoelectric Air
coupled Transducer 201 7.5.4 Why can Piezoelectric Transducers not be Designed Following the Optimum Design? 206 7.5.5 Realistic Alternatives for the Design of Air
coupled Piezoelectric Transducers 207 7.5.6 Optimization under Realistic Constraints: The ML Detuning Technique 209 7.6 High
frequency and Wideband Piezoelectric Transducers: Realizations in the Frequency Range 0.20-2.0 MHz 213 7.7 Focusing Techniques 216 7.7.1 Geometrically Focused Transducer Aperture 217 7.7.2 Fresnel Zone Plates 217 7.7.3 Off
axis Parabolic Mirror 218 References 218 8 Acoustic Microscopy 229 N.J. Watson, M.J.W. Povey, and N.G. Parker 8.1 Introduction 230 8.2 Acoustic Microscope Theory 231 8.3 Acoustic Contrast 232 8.4 Focusing 233 8.5 Spatial Resolution 235 8.6 Temperature Effects 237 8.7 Generation of an Acoustic Image 238 8.8 Components and Operation of an Acoustic Microscope 238 8.8.1 Transducer 238 8.8.2 Sample Unit 242 8.8.3 Positioning System 244 8.8.4 Pulser and Receiver 244 8.8.5 Control Software 244 8.8.6 Sample Preparation and Operating Considerations 244 8.9 Combination of Acoustic Microscopy with other Techniques 245 8.10 Uses of Acoustic Microscopes in the Food Industry 245 8.11 Future Trends for Acoustic Microscopes in the Food Industry 249 8.11.1 Reduced Scanning Time 250 8.11.2 Easier Sample Preparation 250 8.11.3 Non
immersion Operation 250 8.11.4 Non
contact Scanning 250 8.12 Additional Resources 250 Acknowledgements 250 References 251 Part 3 High
intensity Ultrasound Applications 255 Section 3.1 Ultrasound Applications in Liquid Systems 257 9 The Use of Ultrasound for the Inactivation of Microorganisms and Enzymes 258 Cristina Arroyo and James G. Lyng 9.1 Introduction 259 9.2 Microbial Inactivation by Ultrasound 259 9.2.1 A Hint of History 259 9.2.2 Mode of Action and Structural Studies 260 9.2.3 Kinetics of Inactivation 264 9.2.4 Factors Affecting the Lethal Effect of Ultrasound 264 9.2.5 Ultrasound in Combination with other Hurdles 272 9.3 Enzyme Inactivation by Ultrasound 272 9.3.1 Alkaline Phosphatase (EC Number 3.1.3.1) 273 9.3.2 Lactoperoxidase (EC Number 1.11.1.7) 274 9.3.3 Lipase (EC number 3.1.1.3) 274 9.3.4 Lipoxygenase (EC Number 1.13.11.12) 275 9.3.5 Pectin Methylesterase (EC Number 3.1.1.11) 275 9.3.6 Peroxidases (EC Number 1.11.1.7) 276 9.3.7 Polyphenol Oxidases (EC Number 1.14.18.1) 277 9.3.8 Proteases 277 9.4 Conclusions and Future Trends 278 References 278 10 Ultrasonic Preparation of Food Emulsions 287 A. Shanmugam and M. Ashokkumar 10.1 Introduction 287 10.2 Formation of Emulsions 288 10.3 Conventional Emulsification Techniques 290 10.4 Ultrasonic Emulsification 292 10.5 Factors Affecting Sono
emulsification 293 10.5.1 Sonication Frequency 293 10.5.2 Sonication Power 294 10.5.3 Solution Temperature 295 10.5.4 Sonication Time 295 10.6 Role of Food Additives during Emulsification 295 10.6.1 Emulsifiers 295 10.6.2 Stabilizers 296 10.7 Case Studies on Ultrasonic Emulsification 297 10.8 Advantages of US over Other Emulsification Techniques 302 10.9 Conclusions 306 References 306 11 Osmotic Dehydration and Blanching: Ultrasonic Pre
treatments 311 Fabiano A.N. Fernandes and Sueli Rodrigues 11.1 Introduction 312 11.2 Fundamentals 312 11.3 Tissue Structure 315 11.4 Pre
treatment Equipments 315 11.5 Mass Balances 315 11.5.1 Fick's Law 315 11.5.2 Mass Transfer Model 317 11.5.3 Correlations 318 11.5.4 Water Loss and Sugar Gain 318 11.6 Osmotic Solutes 319 11.6.1 Binary Solutions 319 11.6.2 Ternary Solutions 320 11.7 Operating Conditions 320 11.7.1 Ultrasound Frequency 320 11.7.2 Osmotic Solution Concentration 321 11.7.3 Temperature 321 11.7.4 Immersion Time 321 11.8 Preservation 321 11.9 Quality Aspects 322 11.9.1 Vitamin C Content 322 11.9.2 Phenolics and Carotenoid Content 323 11.9.3 Sensory Evaluation 323 11.9.4 Color 323 11.9.5 Mechanical Behavior 324 References 325 12 Ultrasonically Assisted Extraction in Food Processing and the Challenges of Integrating Ultrasound into the Food Industry 329 T.J. Mason and M. Vinatoru 12.1 General Introduction 330 12.2 Extraction Methods for Food Technology 331 12.2.1 Conventional Methods 331 12.2.2 Non
conventional Methods 331 12.2.3 Ultrasonically Assisted Extraction 332 12.2.4 Conclusions 341 12.3 The Challenges of Integrating Ultrasound in the Food Industry 341 12.3.1 The Scale
up of Liquid Processing 343 12.4 Concluding Remarks 349 References 350 Section 3.2 Ultrasound Applications in Gas and Supercritical Fluids Systems 354 13 Ultrasonic Levitation Technologies 355 K. Nakamura 13.1 Introduction 355 13.2 Near
field Acoustic Levitation of a Planer Object 356 13.2.1 Overview of Near
field Acoustic Levitation 356 13.2.2 Model of Levitation 357 13.2.3 Levitation of Large Plate 359 13.3 Non
contact Transport of a Glass Plate 360 13.3.1 Combination with a Motorized Stage 360 13.3.2 Horizontal Force 360 13.3.3 Non
contact Transport Utilizing Traveling Wave Vibrations 361 13.3.4 Large
scale Transporter 363 13.4 Levitation of Droplets in Standing Wave Field in Air 364 13.5 Non
contact Manipulation of a Small Particle or Droplet in Air 366 13.5.1 High
speed Transport of Particle/Droplet 366 13.5.2 Step
by
step Transport 367 13.5.3 Contactless Mixing of Two Droplets 368 13.6 Summary 369 References 369 14 Ultrasonically Assisted Drying 371 J.A. Cárcel, J.V. GarciäPérez, E. Riera, C. Rosselló, and A. Mulet 14.1 Introduction 372 14.2 Why Ultrasound can Intensify Drying Processes 373 14.3 Application of Ultrasound in Gas Media 373 14.4 Influence of Process Variables on the Ultrasonically Assisted Drying Rate 375 14.4.1 Drying Temperature 375 14.4.2 Air Velocity 376 14.4.3 Applied Ultrasonic Power 377 14.4.4 Product Structure 378 14.5 Influence of Ultrasound Application on the Quality of Dried Products 380 14.5.1 Microstructure 380 14.5.2 Physical Properties of Dried Materials 383 14.5.3 Chemical Composition 384 14.6 Main Conclusions and Research Trends 388 Acknowledgements 388 References 388 15 Microbial and Enzyme Inactivation by Ultrasound
assisted Supercritical Fluids 392 C. Ortuño and J. Benedito 15.1 Introduction 393 15.2 Microbial and Enzyme Inactivation by High
power Ultrasound 393 15.3 Microbial and Enzyme Inactivation by Supercritical Carbon Dioxide 394 15.3.1 Microbial Inactivation Mechanisms by SC
CO2 394 15.3.2 Factors Affecting SC
CO2 Microbial Inactivation 396 15.3.3 Mechanisms and Factors in the SC
CO2 Enzyme Inactivation 399 15.4 Combination of HPU and SC
CO2 for Microbial/Enzyme Inactivation 400 15.4.1 Synergistic Effect of HPU in the SC
CO2 Inactivation Process 400 15.4.2 Effect of Temperature, Pressure, and Culture Media on SC
CO2+HPU Treatments 402 15.4.4 Effect of the Type of Microorganism/Enzyme 411 15.5 Conclusions 412 15.6 Recommendations 412 Acknowledgements 413 References 413 Section 3.3 Effect of Ultrasound on Food Constituents 417 16 Impact of High
intensity Ultrasound on Protein Structure and Functionality during Food Processing 418 M. Corzo
Martínez, M. Villamiel, and F. Javier Moreno 16.1 Introduction 418 16.2 Effect of High
intensity Ultrasound on Protein Structure and the Physicochemical Properties of Food Proteins 420 16.3 Effect of High
intensity Ultrasound on the Technological Properties of Food Proteins 423 16.4 Effect of High
intensity Ultrasound on Protein Glycation by the Maillard Reaction 426 16.5 Effect of High
intensity Ultrasound on the Biological Properties of Food Proteins 428 16.6 Conclusions and Future Trends 430 Acknowledgements 431 References 431 17 Ultrasound Effects on Processes and Reactions Involving Carbohydrates 437 A.C. Soria, M. Villamiel, and A. Montilla 17.1 Introduction 438 17.2 Sonophysical Effects 439 17.2.1 Depolymerization 439 17.2.2 Effects of Ultrasound on Functional Properties of Carbohydrates 441 17.2.3 Use of Ultrasound in Carbohydrate Chemistry 443 17.2.4 Crystallization 444 17.3 Sonochemical Effects on Carbohydrate Depolymerization 446 17.4 Effects of Ultrasound on Biotechnological Processes 448 17.4.1 Depolymerization 449 17.4.2 Other Bioprocesses 453 17.5 Conclusions and Future Trends 457 Acknowledgements 458 References 458 18 Effect of Ultrasound on the Physicochemical Properties of Lipids 464 S. Martini 18.1 Introduction 464 18.2 Background 465 18.2.1 Definition of Ultrasound 465 18.2.2 Mechanism of Action of HIU 466 18.3 Modifying the Physical Properties of Lipids with HIU 467 18.3.1 Effect on the Induction Times of Crystallization 468 18.3.2 Effect on Microstructure 468 18.3.3 Effect on Solid Fat Content 472 18.3.4 Effect on Texture and Viscoelasticity 474 18.3.5 Effect on Melting Profile 475 18.3.6 Effect on Polymorphism 476 18.3.7 Effect on Phase Separation 477 18.3.8 Combination with Other Process Variables 477 18.3.9 Effect on Oxidation 478 18.3.10 Use of HIU in a Flow Cell 480 18.4 Concluding Remarks and Future Research 480 Acknowledgments 482 References 482 19 Effect of Ultrasound on Anthocyanins 485 J.A. Moses, G. Rajauria, and B.K. Tiwari 19.1 Introduction 485 19.2 Anthocyanins: Chemistry and Sources 489 19.3 Degradation of Anthocyanins 490 19.4 Ultrasound
assisted Extraction and Processing of Anthocyanins 491 19.5 Effect of Sonication on Anthocyanins 492 19.6 Mechanism of Anthocyanin Degradation 494 19.7 Kinetics of Anthocyanin Degradation 496 19.8 Conclusions 498 References 499 Epilogue 506 Index 508