22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
11 °P sammeln
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! In the mathematical field of topology, a uniform space is a set with a uniform structure. Uniform spaces are topological spaces with additional structure which is used to define uniform properties such as completeness, uniform continuity and uniform convergence. The conceptual difference between uniform and topological structures is that in a uniform space, one can formalize certain notions of relative closeness and closeness of points. In other words, ideas like "x is closer to a than y is to b" make sense in uniform spaces. By comparison, in a…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
High Quality Content by WIKIPEDIA articles! In the mathematical field of topology, a uniform space is a set with a uniform structure. Uniform spaces are topological spaces with additional structure which is used to define uniform properties such as completeness, uniform continuity and uniform convergence. The conceptual difference between uniform and topological structures is that in a uniform space, one can formalize certain notions of relative closeness and closeness of points. In other words, ideas like "x is closer to a than y is to b" make sense in uniform spaces. By comparison, in a general topological space, given sets A,B it is meaningful to say that a point x is arbitrarily close to A (i.e., in the closure of A), or perhaps that A is a smaller neighborhood of x than B, but notions of closeness of points and relative closeness are not described well by topological structure alone.