Entscheidungen unter Unsicherheit können mit dem üblichen Erwartungsnutzenkonzept häufig nicht angemessen modelliert werden, da die zugrunde liegenden Informationen den wahrscheinlichkeitstheoretischen Anforderungen nicht genügen. Ansätze der "beschränkten Rationalität" erscheinen dagegen oft willkürlich, da die Kriterien ihrer Anwendbarkeit fehlen. Die Modellierung von Unsicherheit mit Fuzzy-Mengen, die hier in einer maßtheoretischen Interpretation verwendet werden, erlaubt eine Verallgemeinerung der Rationalitätsbedingungen, die viele dieser Ansätze als Spezialfälle enthält. Eine Anwendung…mehr
Entscheidungen unter Unsicherheit können mit dem üblichen Erwartungsnutzenkonzept häufig nicht angemessen modelliert werden, da die zugrunde liegenden Informationen den wahrscheinlichkeitstheoretischen Anforderungen nicht genügen. Ansätze der "beschränkten Rationalität" erscheinen dagegen oft willkürlich, da die Kriterien ihrer Anwendbarkeit fehlen. Die Modellierung von Unsicherheit mit Fuzzy-Mengen, die hier in einer maßtheoretischen Interpretation verwendet werden, erlaubt eine Verallgemeinerung der Rationalitätsbedingungen, die viele dieser Ansätze als Spezialfälle enthält. Eine Anwendung bei Social Choice Problemen zeigt das Potential des Ansatzes zur Erklärung und Verbesserung der Verfahren kollektiver Entscheidungen.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
1 Einleitung.- I: Grundlagen der Fuzzy-Mathematik.- 2 Charakterisierung der Fuzzy-Methode.- 3 Fuzzy-Mengen-Theorie.- 4 Fuzzy-Maßtheorie.- 5 Zur Synthese von Fuzzy-Mail-und Fuzzy-Mengen-Theorie.- 6 Fuzzy-Relationen.- II: Die Anwendung des Fuzzy-Ansatzes in der Entscheidungstheorie.- 7 Entscheidungen bei Unschärfe.- 8 Wahlhandlungstheorie im Fuzzy-Kontert.- 9 Die Anwendung von Fuzzy-Ansätzen bei Social Choice Problemen.- 10 Zusammenfassung und Ausblick.- 11 Anhang.- 11.1 Notation.- 11.2 Maßtheoretische Defmitionen.- 11.3 Die Frage nach subjektiver Einkommensbewertung imsozio-ökonomischen Panel.- 11.4 Beweis des Satzes: Archimedische Normen mit Nullteller sind nilpotent.- 11.5 Archimedische t-Normen mit Nullteiler und konjugierte Funktionen.- 11.6 Bedingungen für die gleichzeitige t-Norm-und t-Conorm-Zerlegbarkeitvon Fuzzy-Maßen.- 11.6.1 Nicht gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maße.- 11.6.2 Gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maßev.- 11.7 Strikte Präferenzrelation und Indifferenzrelation mit unterschiedlichenVernüpfungsoperatoren anhand des Beispiels.- 11.8 Fuzzy-Indifferenz-und strikte Fuzzy-Präferenzrelation.- 11.8.1 Ausgangspunkt: strikte Fuzzy-Präferenz.- 11.8.2 Ausgangspunkt: Fuzzy-Indifferenz.- 11.9 Programm zur Berechnung der "nächsten" scharfen Präferenzordnung.- 11.10 Berechnung des unteren Choquet-Integral für alle drei Individuen.- 12 Literatur.
1 Einleitung.- I: Grundlagen der Fuzzy-Mathematik.- 2 Charakterisierung der Fuzzy-Methode.- 3 Fuzzy-Mengen-Theorie.- 4 Fuzzy-Maßtheorie.- 5 Zur Synthese von Fuzzy-Mail-und Fuzzy-Mengen-Theorie.- 6 Fuzzy-Relationen.- II: Die Anwendung des Fuzzy-Ansatzes in der Entscheidungstheorie.- 7 Entscheidungen bei Unschärfe.- 8 Wahlhandlungstheorie im Fuzzy-Kontert.- 9 Die Anwendung von Fuzzy-Ansätzen bei Social Choice Problemen.- 10 Zusammenfassung und Ausblick.- 11 Anhang.- 11.1 Notation.- 11.2 Maßtheoretische Defmitionen.- 11.3 Die Frage nach subjektiver Einkommensbewertung imsozio-ökonomischen Panel.- 11.4 Beweis des Satzes: Archimedische Normen mit Nullteller sind nilpotent.- 11.5 Archimedische t-Normen mit Nullteiler und konjugierte Funktionen.- 11.6 Bedingungen für die gleichzeitige t-Norm-und t-Conorm-Zerlegbarkeitvon Fuzzy-Maßen.- 11.6.1 Nicht gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maße.- 11.6.2 Gleichzeitig t-Norm-und t-Conrom-zerlegbare Fuzzy-Maßev.- 11.7 Strikte Präferenzrelation und Indifferenzrelation mit unterschiedlichenVernüpfungsoperatoren anhand des Beispiels.- 11.8 Fuzzy-Indifferenz-und strikte Fuzzy-Präferenzrelation.- 11.8.1 Ausgangspunkt: strikte Fuzzy-Präferenz.- 11.8.2 Ausgangspunkt: Fuzzy-Indifferenz.- 11.9 Programm zur Berechnung der "nächsten" scharfen Präferenzordnung.- 11.10 Berechnung des unteren Choquet-Integral für alle drei Individuen.- 12 Literatur.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826