160,49 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

This book discusses urban microclimate and heat-related risks in urban areas, brought on by the combination of global climate change effects and local modification of climate determined by extensive urbanization such as the 'Urban heat island' phenomenon. This matter is relevant to almost all urbanized areas in the world, where the increase of urban population and air temperature is expected to endanger both the overall health of the population and the energy supply for the functioning of urban systems. The book details the inter-relationship between urban morphology, microclimate and building…mehr

Produktbeschreibung
This book discusses urban microclimate and heat-related risks in urban areas, brought on by the combination of global climate change effects and local modification of climate determined by extensive urbanization such as the 'Urban heat island' phenomenon. This matter is relevant to almost all urbanized areas in the world, where the increase of urban population and air temperature is expected to endanger both the overall health of the population and the energy supply for the functioning of urban systems. The book details the inter-relationship between urban morphology, microclimate and building energy performance and presents a multidisciplinary approach that brings together Urban Climatology, Engineering and Architectural knowledge to support the development of reliable models and tools for research and practice.

This book is a useful tool for architects and building energy modelers, urban planners and geographers who need a practical guide to realize basic urban microclimate simulation for use in both academic research and planning practice.

Autorenporträt
Massimo Palme is Materials Engineer and holds a PhD in Architecture, Energy and Environment, and a Professional Degree in Data Science. Currently he is Associate Professor and Director of the Urban and Built Environment Research Lab, Catholic University of the North in Antofagasta, Chile. Since 2006 develops research on the topics of building simulation, sustainability of urban environment, and climate change mitigation and adaptation. President of the Chilean Chapter of the International Building Performance Simulation Association and Secretary of the Chilean Chapter of the International Landscape Ecology Association, Massimo is author of more than 100 publications in Journals, Books and Conference Proceedings. He has been founded by Senescyt in Ecuador and Fondecyt in Chile to develop research projects as principal investigator and he has been visiting researcher at: Sapienza University of Rome, Catania University, National Institute of Renewable Energies and EnergyEfficiency of Ecuador, Federal University of Santa Catarina, and Kobe University as Invitational Fellow of the Japanese Society for the Promotion of Science. Agnese Salvati  is an Architectural Engineer with a PhD in "Architecture, Energy and Environment" & "Engineering-based Architecture and Urban Planning" from Polytechnic University of Catalonia (UPC)and Sapienza University of Rome. As a Research Fellow in Resource Efficient Future Cities at the Institute of Energy Futures at Brunel University London, her research work focuses on the interrelationships between urban morphology, urban microclimate and building energy performance. She participated in national and international research projects among which: the IEA EBC Annex 80 on Resilient Cooling of Building, the EPSRC project Urban Albedo, the EU Horizon2020 project ReCO2St, the Spanish national researchproject M.U.M - Mediterranean Urban Morphology. She was invited as visiting researcher at: the School of Architecture of the Catholic University of the North in Antofagasta, Chile in 2017; the laboratory of Energy Efficiency, Sustainability and Climate Change at the National University of Rosario, Argentina in 2019. She had research appointments at the Low Carbon Building group at Oxford Brookes University, the AiEM -Architecture Energy and Environment research group at the Barcelona School of Architecture (ETSAB) and the SOS Urban Lab at faculty of Faculty of Civil and Industrial Engineering at Sapienza University of Rome.