Andrew B. Lawson
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling
Andrew B. Lawson
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies.
Andere Kunden interessierten sich auch für
- Andrew B. LawsonUsing R for Bayesian Spatial and Spatio-Temporal Health Modeling109,99 €
- Gary L RosnerBayesian Thinking in Biostatistics97,99 €
- Paul GustafsonBayesian Inference for Partially Identified Models46,99 €
- Miguel A. Martinez-Beneito (FISABIO -Public Health, Valencia, SpainDisease Mapping73,99 €
- Jun OtsukaThinking About Statistics31,99 €
- Andrew Gelman (Department of Statistics, Columbia University, New YBayesian Data Analysis108,99 €
- Ken A. AhoFoundational and Applied Statistics for Biologists Using R41,99 €
-
-
-
Using R for Bayesian Spatial and Spatio-Temporal Health Modeling provides a major resource for those interested in applying Bayesian methodology in small area health data studies.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Chapman & Hall/CRC The R Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 300
- Erscheinungstermin: 29. Mai 2023
- Englisch
- Abmessung: 234mm x 156mm x 16mm
- Gewicht: 456g
- ISBN-13: 9780367760670
- ISBN-10: 0367760673
- Artikelnr.: 67824993
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Chapman & Hall/CRC The R Series
- Verlag: Taylor & Francis Ltd
- Seitenzahl: 300
- Erscheinungstermin: 29. Mai 2023
- Englisch
- Abmessung: 234mm x 156mm x 16mm
- Gewicht: 456g
- ISBN-13: 9780367760670
- ISBN-10: 0367760673
- Artikelnr.: 67824993
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Dr Lawson is Professor of Biostatistics in the Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, College of Medicine, MUSC and is an MUSC Distinguished Professor Emeritus and ASA Fellow. His PhD was in Spatial Statistics from the University of St. Andrews, UK. He has over 190 journal papers on the subject of spatial epidemiology, spatial statistics and related areas. In addition to a number of book chapters, he is the author of 10 books in areas related to spatial epidemiology and health surveillance. The most recent of these is Lawson, A.B. et al (eds) (2016) Handbook of Spatial Epidemiology. CRC Press, New York, and in 2018 a 3rd edition of Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology CRC Press. He has acted as an advisor in disease mapping and risk assessment for the World Health Organization (WHO) and is the founding editor of the Elsevier journal Spatial and Spatio-temporal Epidemiology. Dr Lawson has delivered many short courses in different locations over the last 20 years on Bayesian Disease Mapping with OpenBUGS, INLA, and Nimble, and more general spatial epidemiology topics. Web site: http://people.musc.edu/~abl6
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
1. Introduction and Data Sets
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling
2. R Graphics and Spatial Health Data
3. Bayesian Hierarchical Models
4. Computation
5. Bayesian model Goodness of Fit Criteria
6. Bayesian Disease Mapping Models
Part I Basic Software Approaches
7. BRugs/OpenBUGS
8. Nimble
9. CARBayes
10. INLA and R-INLA
11. Clustering, Latent Variable and Mixture Modeling
12. Spatio-Temporal Modeling with MCMC
13. Spatio-Temporal Modeling with INLA
Part II Some Advanced and Special topics
14. Multivariate Models
15. Survival Modeling
16. Missingness, Measurement Error and Variable Selection
17. Individual Event Modeling
18. Infectious Disease Modeling