Van der Corput Lemma (Harmonic Analysis)
Broschiertes Buch

Van der Corput Lemma (Harmonic Analysis)

Versandkostenfrei!
Versandfertig in 6-10 Tagen
23,99 €
inkl. MwSt.
PAYBACK Punkte
12 °P sammeln!
High Quality Content by WIKIPEDIA articles! In mathematics, in the field of harmonic analysis, the van der Corput lemma is an estimate for oscillatory integrals named after the Dutch mathematician J. G. van der Corput. The following result is stated by E. Stein. The van der Corput lemma is closely related to the sublevel set estimates (see for example), which give the upper bound on the measure of the set where a function takes values not larger than epsilon,. Suppose that a real-valued function phi(x), is smooth on a finite or infinite interval IsubsetR, and that phi^{(k)}(x) ge 1, for all xi...