High Quality Content by WIKIPEDIA articles! A van der Corput sequence is a low-discrepancy sequence over the unit interval first published in 1935 by the Dutch mathematician J. G. van der Corput. It is constructed by reversing the base n representation of the sequence of natural numbers (1, 2, 3, ). For example, the decimal van der Corput sequence begins: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, 0.41, 0.51, 0.61, 0.71, 0.81, 0.91, 0.02, 0.12, 0.22, 0.32, whereas the binary van der Corput sequence can be written as: 0.12, 0.012, 0.112, 0.0012, 0.1012, 0.0112, 0.1112, 0.00012, 0.10012, 0.01012, 0.11012, 0.00112, 0.10112, 0.01112, 0.11112, or, equivalently, as: frac{1}{2}, frac{1}{4}, frac{3}{4}, frac{1}{8}, frac{5}{8}, frac{3}{8}, frac{7}{8}, frac{1}{16}, frac{9}{16}, frac{5}{16}, frac{13}{16}, frac{3}{16}, frac{11}{16}, frac{7}{16}, frac{15}{16}, ldots The elements of the van der Corput sequence (in any base) form a dense set in the unit interval: for any real number in [0, 1] there exists a subsequence of the van der Corput sequence that converges towards that number. They are also uniformly distributed over the unit interval.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno