51,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
26 °P sammeln
  • Broschiertes Buch

This work develops duality for systems originally modeled by non-linear differential equations. For such problems, the variational formulations are in general non-convex. In many situations the primal approaches have no solutions in the classical sense, being the minimizing sequences only weakly convergent. However, through the dual formulations, it is possible to compute these weak limits, and such evaluations have many practical applications, such as for composites in elasticity, phase transition models, problems in micro-magnetism, and others. Among such results in variational analysis, we…mehr

Produktbeschreibung
This work develops duality for systems originally modeled by non-linear differential equations. For such problems, the variational formulations are in general non-convex. In many situations the primal approaches have no solutions in the classical sense, being the minimizing sequences only weakly convergent. However, through the dual formulations, it is possible to compute these weak limits, and such evaluations have many practical applications, such as for composites in elasticity, phase transition models, problems in micro-magnetism, and others. Among such results in variational analysis, we also highlight the establishment of a linear system whose the solution also solves the incompressible Navier-Stokes system. To summarize, we introduce convex analysis as an interesting alternative tool for the undestanding and computation of some important problems in the calculus of variations.
Autorenporträt
Fabio Botelho was born in Pelotas, RS- Brazil. He got his PhD degree in Mathematics by Virginia Tech-USA in July, 2009. At present he is an assistant professor at the Mathematics Department of Federal University of Pelotas. The main focus of his research is convex analysis applied to non-convex problems in calculus of variations.