A comprehensive introduction to modern applied functional analysis. Assumes only basic notions of calculus, real analysis, geometry, and differential equations.
A comprehensive introduction to modern applied functional analysis. Assumes only basic notions of calculus, real analysis, geometry, and differential equations.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Alexandru Kristály is Associate Professor in the Department of Economics at the University of Babe¿-Bolyai in Cluj-Napoca, Romania.
Inhaltsangabe
Foreword Jean Mawhin Preface Part I. Variational Principles in Mathematical Physics: 1. Variational principles 2. Variational inequalities 3. Nonlinear eigenvalue problems 4. Elliptic systems of gradient type 5. Systems with arbitrary growth nonlinearities 6. Scalar field systems 7. Competition phenomena in Dirichlet problems 8. Problems to Part I Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds 10. Asymptotically critical problems on spheres 11. Equations with critical exponent 12. Problems to Part II Part III. Variational Principles in Economics: 13. Mathematical preliminaries 14. Minimization of cost-functions on manifolds 15. Best approximation problems on manifolds 16. A variational approach to Nash equilibria 17. Problems to Part III Appendix A. Elements of convex analysis Appendix B. Function spaces Appendix C. Category and genus Appendix D. Clarke and Degiovanni gradients Appendix E. Elements of set-valued analysis References Index.
Foreword Jean Mawhin Preface Part I. Variational Principles in Mathematical Physics: 1. Variational principles 2. Variational inequalities 3. Nonlinear eigenvalue problems 4. Elliptic systems of gradient type 5. Systems with arbitrary growth nonlinearities 6. Scalar field systems 7. Competition phenomena in Dirichlet problems 8. Problems to Part I Part II. Variational Principles in Geometry: 9. Sublinear problems on Riemannian manifolds 10. Asymptotically critical problems on spheres 11. Equations with critical exponent 12. Problems to Part II Part III. Variational Principles in Economics: 13. Mathematical preliminaries 14. Minimization of cost-functions on manifolds 15. Best approximation problems on manifolds 16. A variational approach to Nash equilibria 17. Problems to Part III Appendix A. Elements of convex analysis Appendix B. Function spaces Appendix C. Category and genus Appendix D. Clarke and Degiovanni gradients Appendix E. Elements of set-valued analysis References Index.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826