59,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
30 °P sammeln
  • Broschiertes Buch

This textbook serves as a modern introduction to vascular biomechanics and provides the comprehensive overview of the entire vascular system that is needed to run successful vascular biomechanics simulations. It aims to provide the reader with a holistic analysis of the vascular system towards its biomechanical description and includes numerous fully through-calculated examples. Various topics covered include vascular system descriptions, vascular exchange, blood vessel mechanics, vessel tissue characterization, blood flow mechanics, and vascular tissue growth and remodeling.
This textbook
…mehr

Produktbeschreibung
This textbook serves as a modern introduction to vascular biomechanics and provides the comprehensive overview of the entire vascular system that is needed to run successful vascular biomechanics simulations. It aims to provide the reader with a holistic analysis of the vascular system towards its biomechanical description and includes numerous fully through-calculated examples. Various topics covered include vascular system descriptions, vascular exchange, blood vessel mechanics, vessel tissue characterization, blood flow mechanics, and vascular tissue growth and remodeling.

This textbook is ideally suited for students and researchers studying and working in classical and computational vascular biomechanics. The book could also be of interest to developers of vascular devices and experts working with the regulatory approval of biomedical simulations.

Follows the principle of "learning by doing" and provides numerous fully through-calculated examples for active learning, immediate recall, and self-examination;Provides a holistic understanding of vascular functioning and the integration of information from different disciplines to enable students to use sophisticated numerical methods to simulate the response of the vascular system;Includes several case studies that integrate the presented material. Case studies address problems, such as the biomechanical rupture risk assessment of Abdominal Aortic Aneurysms, Finite Element analysis of structural and blood flow problems, the computation of wall stress and wall shear stress in the aorta.

Autorenporträt
T. Christian Gasser is Professor of Biomechanics at KTH Royal Institute of Technology in Stockholm, Sweden, and Adjunct Professor at the University of Southern Denmark in Odense, Denmark. Professor Gasser is principal founder of VASCOPS GmbH, Graz, Austria and ARTEC Vascular Diagnosis AB, Stockholm Sweden. His scientific interest relates to vascular biomechanical problems, with particular emphasis on numerical techniques to solve clinically-relevant questions. Constitutive models developed by Professor Gasser have been implemented in many major Finite Element simulation packages, and translational research led to diagnostic software that is used at many clinical centers. He has authored almost 100 papers published in peer-reviewed premium journals, two international patents, 10+ book chapters, and gave more than 200 presentations at international conferences. With an h-index of 45 and over 12k Google scholar citations, Professor Gasser is amongst the highest-cited researchers in vascular biomechanics. He has taught numerous courses at undergraduate and graduate levels, served as supervisor for many engineering and clinical PhD students, is frequent member of examination and grading committees, and reviewer of several science councils as well as the most relevant scientific journals in the field.