Die Tensorrechnung, die als Spezialfall die Vektorrechnung umfasst, ist zur Beschreibung physikalischer Zusammenhänge auf vielen Gebieten erforderlich.
Neuartig in diesem Buch ist die Verwendung von Matrizen für die Darstellung von ko- und kontravarianten Komponenten insbesondere beim Wechsel der Koordinatensysteme. Dargestellt werden Tensoralgebra und Tensoranalysis mit Christoffel-Symbolen und kovarianter Ableitung in krummlinigen Koordinaten sowie die für die physikalischen Anwendungen wichtigen Differentialoperationen und Integralsätze, die speziell in orthogonalen Koordinatensystemen ausführlich angegeben werden.
Neuartig in diesem Buch ist die Verwendung von Matrizen für die Darstellung von ko- und kontravarianten Komponenten insbesondere beim Wechsel der Koordinatensysteme. Dargestellt werden Tensoralgebra und Tensoranalysis mit Christoffel-Symbolen und kovarianter Ableitung in krummlinigen Koordinaten sowie die für die physikalischen Anwendungen wichtigen Differentialoperationen und Integralsätze, die speziell in orthogonalen Koordinatensystemen ausführlich angegeben werden.