Vergleichsstudie zu ensemblistischen Methoden der Klassifizierung

Vergleichsstudie zu ensemblistischen Methoden der Klassifizierung

Anwendung von Adaboosting und Random Forest auf binäre und Multi-Klassen-Datenbanken

Versandkostenfrei!
Versandfertig in 6-10 Tagen
43,90 €
inkl. MwSt.
PAYBACK Punkte
0 °P sammeln!
Ensemblistische Methoden basieren auf der Idee, die Vorhersagen mehrerer Klassifikatoren zu kombinieren, um eine bessere Verallgemeinerung zu erreichen und mögliche Mängel einzelner Prädiktoren auszugleichen.Man unterscheidet zwei Familien von Methoden: Parallele Methoden (Bagging, Random Forests), bei denen das Prinzip darin besteht, den Mittelwert mehrerer Vorhersagen zu bilden, in der Hoffnung auf ein besseres Ergebnis infolge der Verringerung der Varianz des mittleren Schätzers.Sequentielle Methoden (Boosting), bei denen die Parameter iterativ angepasst werden, um eine bessere Mischung...