Daniel J Inman
Vibration with Control
Daniel J Inman
Vibration with Control
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An advanced look at vibration analysis with a focus on active vibration suppression As modern devices, from cell phones to airplanes, become lighter and more flexible, vibration suppression and analysis becomes more critical. Vibration with Control, 2nd Edition includes modelling, analysis and testing methods. New topics include metastructures and the use of piezoelectric materials, and numerical methods are also discussed. All material is placed on a firm mathematical footing by introducing concepts from linear algebra (matrix theory) and applied functional analysis when required. Key…mehr
Andere Kunden interessierten sich auch für
- Jie HuangNonlinear Dynamics and Vibration Control of Flexible Systems153,99 €
- B. NeumannThe Interaction Between Geometry and Performance of a Centrifugal Pump397,99 €
- Christian LalanneMechanical Vibration and Shock Analysis, Random Vibration240,99 €
- Christian LalanneMechanical Vibration and Shock Analysis, Mechanical Shock240,99 €
- Christian LalanneMechanical Vibration and Shock Analysis, Fatigue Damage240,99 €
- Donald E. Carlson / R.T. Shield (eds.)Proceedings of the Iutam Symposium on Finite Elasticity152,99 €
- Michael FeldmanHilbert Transform Applications in Mechanical Vibration156,99 €
-
-
-
An advanced look at vibration analysis with a focus on active vibration suppression As modern devices, from cell phones to airplanes, become lighter and more flexible, vibration suppression and analysis becomes more critical. Vibration with Control, 2nd Edition includes modelling, analysis and testing methods. New topics include metastructures and the use of piezoelectric materials, and numerical methods are also discussed. All material is placed on a firm mathematical footing by introducing concepts from linear algebra (matrix theory) and applied functional analysis when required. Key features: * Combines vibration modelling and analysis with active control to provide concepts for effective vibration suppression. * Introduces the use of piezoelectric materials for vibration sensing and suppression. * Provides a unique blend of practical and theoretical developments. * Examines nonlinear as well as linear vibration analysis. * Provides Matlab instructions for solving problems. * Contains examples and problems. * PowerPoint Presentation materials and digital solutions manual available for instructors. Vibration with Control, 2nd Edition is an ideal reference and textbook for graduate students in mechanical, aerospace and structural engineering, as well as researchers and practitioners in the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- 2nd edition
- Seitenzahl: 440
- Erscheinungstermin: 17. April 2017
- Englisch
- Abmessung: 251mm x 174mm x 27mm
- Gewicht: 814g
- ISBN-13: 9781119108214
- ISBN-10: 1119108217
- Artikelnr.: 47707242
- Verlag: Wiley
- 2nd edition
- Seitenzahl: 440
- Erscheinungstermin: 17. April 2017
- Englisch
- Abmessung: 251mm x 174mm x 27mm
- Gewicht: 814g
- ISBN-13: 9781119108214
- ISBN-10: 1119108217
- Artikelnr.: 47707242
Daniel J. Inman, University of Michigan, USA
Preface xi
About the Companion Website xiii
1 Single Degree of Freedom Systems 1
1.1 Introduction 1
1.2 Spring-Mass System 1
1.3 Spring-Mass-Damper System 6
1.4 Forced Response 10
1.5 Transfer Functions and Frequency Methods 17
1.6 Complex Representation and Impedance 23
1.7 Measurement and Testing 25
1.8 Stability 28
1.9 Design and Control of Vibrations 31
1.10 Nonlinear Vibrations 35
1.11 Computing and Simulation in MatlabTM 38
Chapter Notes 43
References 44
Problems 46
2 Lumped Parameter Models 49
2.1 Introduction 49
2.2 Modeling 52
2.3 Classifications of Systems 56
2.4 Feedback Control Systems 57
2.5 Examples 59
2.6 Experimental Models 64
2.7 Nonlinear Models and Equilibrium 65
Chapter Notes 67
References 68
Problems 68
3 Matrices and the Free Response 71
3.1 Introduction 71
3.2 Eigenvalues and Eigenvectors 71
3.3 Natural Frequencies and Mode Shapes 77
3.4 Canonical Forms 86
3.5 Lambda Matrices 91
3.6 Eigenvalue Estimates 94
3.7 Computation Eigenvalue Problems in MATLAB 101
3.8 Numerical Simulation of the Time Response in MATLABtm 104
Chapter Notes 106
References 107
Problems 108
4 Stability 113
4.1 Introduction 113
4.2 Lyapunov Stability 113
4.3 Conservative Systems 116
4.4 Systems with Damping 117
4.5 Semidefinite Damping 118
4.6 Gyroscopic Systems 119
4.7 Damped Gyroscopic Systems 121
4.8 Circulatory Systems 122
4.9 Asymmetric Systems 123
4.10 Feedback Systems 128
4.11 Stability in the State Space 131
4.12 Stability of Nonlinear Systems 133
Chapter Notes 137
References 138
Problems 139
5 Forced Response of Lumped Parameter Systems 143
5.1 Introduction 143
5.2 Response via State SpaceMethods 143
5.3 Decoupling Conditions and Modal Analysis 148
5.4 Response of Systems with Damping 152
5.5 Stability of the Forced Response 155
5.6 Response Bounds 157
5.7 Frequency Response Methods 158
5.8 Stability of Feedback Control 161
5.9 Numerical Simulations in Matlab 163
Chapter Notes 165
References 166
Problems 167
6 Vibration Suppression 171
6.1 Introduction 171
6.2 Isolators and Absorbers 172
6.3 OptimizationMethods 175
6.4 Metastructures 179
6.5 Design Sensitivity and Redesign 181
6.6 Passive and Active Control 184
6.7 Controllability and Observability 188
6.8 Eigenstructure Assignment 193
6.9 Optimal Control 196
6.10 Observers (Estimators) 203
6.11 Realization 208
6.12 Reduced-Order Modeling 210
6.13 Modal Control in State Space 216
6.14 Modal Control in Physical Space 219
6.15 Robustness 224
6.16 Positive Position Feedback Control 226
6.17 Matlab Commands for Control Calculations 229
Chapter Notes 233
References 234
Problems 237
7 Distributed Parameter Models 241
7.1 Introduction 241
7.2 Equations of Motion 241
7.3 Vibration of Strings 247
7.4 Rods and Bars 252
7.5 Vibration of Beams 256
7.6 Coupled Effects 263
7.7 Membranes and Plates 267
7.8 Layered Materials 271
7.9 Damping Models 273
7.10 Modeling Piezoelectric Wafers 276
Chapter Notes 281
References 281
Problems 283
8 Formal Methods of Solutions 287
8.1 Introduction 287
8.2 Boundary Value Problems and Eigenfunctions 287
8.3 Modal Analysis of the Free Response 290
8.4 Modal Analysis in Damped Systems 292
8.5 Transform Methods 294
8.6 Green's Functions 296
Chapter Notes 300
References 301
Problems 301
9 Operators and the Free Response 303
9.1 Introduction 303
9.2 Hilbert Spaces 304
9.3 Expansion Theorems 308
9.4 Linear Operators 309
9.5 Compact Operators 315
9.6 Theoretical Modal Analysis 317
9.7 Eigenvalue Estimates 318
9.8 Enclosure Theorems 321
Chapter Notes 324
References 324
Problems 325
10 Forced Response and Control 327
10.1 Introduction 327
10.2 Response by Modal Analysis 327
10.3 Modal Design Criteria 330
10.4 Combined Dynamical Systems 332
10.5 Passive Control and Design 336
10.6 Distributed Modal Control 338
10.7 Nonmodal Distributed Control 340
10.8 State Space Control Analysis 341
10.9 Vibration Suppression using Piezoelectric Materials 342
Chapter Notes 344
References 345
Problems 346
11 Approximations of Distributed Parameter Models 349
11.1 Introduction 349
11.2 Modal Truncation 349
11.3 Rayleigh-Ritz-Galerkin Approximations 351
11.4 Finite Element Method 354
11.5 Substructure Analysis 359
11.6 Truncation in the Presence of Control 361
11.7 Impedance Method of Truncation and Control 369
Chapter Notes 371
References 371
Problems 372
12 Vibration Measurement 375
12.1 Introduction 375
12.2 Measurement Hardware 376
12.3 Digital Signal Processing 379
12.4 Random Signal Analysis 383
12.5 Modal Data Extraction (Frequency Domain) 387
12.6 Modal Data Extraction (Time Domain) 390
12.7 Model Identification 395
12.8 Model Updating 397
12.9 Verification and Validation 398
Chapter Notes 400
References 401
Problems 402
A Comments on Units 405
B Supplementary Mathematics 409
Index 413
About the Companion Website xiii
1 Single Degree of Freedom Systems 1
1.1 Introduction 1
1.2 Spring-Mass System 1
1.3 Spring-Mass-Damper System 6
1.4 Forced Response 10
1.5 Transfer Functions and Frequency Methods 17
1.6 Complex Representation and Impedance 23
1.7 Measurement and Testing 25
1.8 Stability 28
1.9 Design and Control of Vibrations 31
1.10 Nonlinear Vibrations 35
1.11 Computing and Simulation in MatlabTM 38
Chapter Notes 43
References 44
Problems 46
2 Lumped Parameter Models 49
2.1 Introduction 49
2.2 Modeling 52
2.3 Classifications of Systems 56
2.4 Feedback Control Systems 57
2.5 Examples 59
2.6 Experimental Models 64
2.7 Nonlinear Models and Equilibrium 65
Chapter Notes 67
References 68
Problems 68
3 Matrices and the Free Response 71
3.1 Introduction 71
3.2 Eigenvalues and Eigenvectors 71
3.3 Natural Frequencies and Mode Shapes 77
3.4 Canonical Forms 86
3.5 Lambda Matrices 91
3.6 Eigenvalue Estimates 94
3.7 Computation Eigenvalue Problems in MATLAB 101
3.8 Numerical Simulation of the Time Response in MATLABtm 104
Chapter Notes 106
References 107
Problems 108
4 Stability 113
4.1 Introduction 113
4.2 Lyapunov Stability 113
4.3 Conservative Systems 116
4.4 Systems with Damping 117
4.5 Semidefinite Damping 118
4.6 Gyroscopic Systems 119
4.7 Damped Gyroscopic Systems 121
4.8 Circulatory Systems 122
4.9 Asymmetric Systems 123
4.10 Feedback Systems 128
4.11 Stability in the State Space 131
4.12 Stability of Nonlinear Systems 133
Chapter Notes 137
References 138
Problems 139
5 Forced Response of Lumped Parameter Systems 143
5.1 Introduction 143
5.2 Response via State SpaceMethods 143
5.3 Decoupling Conditions and Modal Analysis 148
5.4 Response of Systems with Damping 152
5.5 Stability of the Forced Response 155
5.6 Response Bounds 157
5.7 Frequency Response Methods 158
5.8 Stability of Feedback Control 161
5.9 Numerical Simulations in Matlab 163
Chapter Notes 165
References 166
Problems 167
6 Vibration Suppression 171
6.1 Introduction 171
6.2 Isolators and Absorbers 172
6.3 OptimizationMethods 175
6.4 Metastructures 179
6.5 Design Sensitivity and Redesign 181
6.6 Passive and Active Control 184
6.7 Controllability and Observability 188
6.8 Eigenstructure Assignment 193
6.9 Optimal Control 196
6.10 Observers (Estimators) 203
6.11 Realization 208
6.12 Reduced-Order Modeling 210
6.13 Modal Control in State Space 216
6.14 Modal Control in Physical Space 219
6.15 Robustness 224
6.16 Positive Position Feedback Control 226
6.17 Matlab Commands for Control Calculations 229
Chapter Notes 233
References 234
Problems 237
7 Distributed Parameter Models 241
7.1 Introduction 241
7.2 Equations of Motion 241
7.3 Vibration of Strings 247
7.4 Rods and Bars 252
7.5 Vibration of Beams 256
7.6 Coupled Effects 263
7.7 Membranes and Plates 267
7.8 Layered Materials 271
7.9 Damping Models 273
7.10 Modeling Piezoelectric Wafers 276
Chapter Notes 281
References 281
Problems 283
8 Formal Methods of Solutions 287
8.1 Introduction 287
8.2 Boundary Value Problems and Eigenfunctions 287
8.3 Modal Analysis of the Free Response 290
8.4 Modal Analysis in Damped Systems 292
8.5 Transform Methods 294
8.6 Green's Functions 296
Chapter Notes 300
References 301
Problems 301
9 Operators and the Free Response 303
9.1 Introduction 303
9.2 Hilbert Spaces 304
9.3 Expansion Theorems 308
9.4 Linear Operators 309
9.5 Compact Operators 315
9.6 Theoretical Modal Analysis 317
9.7 Eigenvalue Estimates 318
9.8 Enclosure Theorems 321
Chapter Notes 324
References 324
Problems 325
10 Forced Response and Control 327
10.1 Introduction 327
10.2 Response by Modal Analysis 327
10.3 Modal Design Criteria 330
10.4 Combined Dynamical Systems 332
10.5 Passive Control and Design 336
10.6 Distributed Modal Control 338
10.7 Nonmodal Distributed Control 340
10.8 State Space Control Analysis 341
10.9 Vibration Suppression using Piezoelectric Materials 342
Chapter Notes 344
References 345
Problems 346
11 Approximations of Distributed Parameter Models 349
11.1 Introduction 349
11.2 Modal Truncation 349
11.3 Rayleigh-Ritz-Galerkin Approximations 351
11.4 Finite Element Method 354
11.5 Substructure Analysis 359
11.6 Truncation in the Presence of Control 361
11.7 Impedance Method of Truncation and Control 369
Chapter Notes 371
References 371
Problems 372
12 Vibration Measurement 375
12.1 Introduction 375
12.2 Measurement Hardware 376
12.3 Digital Signal Processing 379
12.4 Random Signal Analysis 383
12.5 Modal Data Extraction (Frequency Domain) 387
12.6 Modal Data Extraction (Time Domain) 390
12.7 Model Identification 395
12.8 Model Updating 397
12.9 Verification and Validation 398
Chapter Notes 400
References 401
Problems 402
A Comments on Units 405
B Supplementary Mathematics 409
Index 413
Preface xi
About the Companion Website xiii
1 Single Degree of Freedom Systems 1
1.1 Introduction 1
1.2 Spring-Mass System 1
1.3 Spring-Mass-Damper System 6
1.4 Forced Response 10
1.5 Transfer Functions and Frequency Methods 17
1.6 Complex Representation and Impedance 23
1.7 Measurement and Testing 25
1.8 Stability 28
1.9 Design and Control of Vibrations 31
1.10 Nonlinear Vibrations 35
1.11 Computing and Simulation in MatlabTM 38
Chapter Notes 43
References 44
Problems 46
2 Lumped Parameter Models 49
2.1 Introduction 49
2.2 Modeling 52
2.3 Classifications of Systems 56
2.4 Feedback Control Systems 57
2.5 Examples 59
2.6 Experimental Models 64
2.7 Nonlinear Models and Equilibrium 65
Chapter Notes 67
References 68
Problems 68
3 Matrices and the Free Response 71
3.1 Introduction 71
3.2 Eigenvalues and Eigenvectors 71
3.3 Natural Frequencies and Mode Shapes 77
3.4 Canonical Forms 86
3.5 Lambda Matrices 91
3.6 Eigenvalue Estimates 94
3.7 Computation Eigenvalue Problems in MATLAB 101
3.8 Numerical Simulation of the Time Response in MATLABtm 104
Chapter Notes 106
References 107
Problems 108
4 Stability 113
4.1 Introduction 113
4.2 Lyapunov Stability 113
4.3 Conservative Systems 116
4.4 Systems with Damping 117
4.5 Semidefinite Damping 118
4.6 Gyroscopic Systems 119
4.7 Damped Gyroscopic Systems 121
4.8 Circulatory Systems 122
4.9 Asymmetric Systems 123
4.10 Feedback Systems 128
4.11 Stability in the State Space 131
4.12 Stability of Nonlinear Systems 133
Chapter Notes 137
References 138
Problems 139
5 Forced Response of Lumped Parameter Systems 143
5.1 Introduction 143
5.2 Response via State SpaceMethods 143
5.3 Decoupling Conditions and Modal Analysis 148
5.4 Response of Systems with Damping 152
5.5 Stability of the Forced Response 155
5.6 Response Bounds 157
5.7 Frequency Response Methods 158
5.8 Stability of Feedback Control 161
5.9 Numerical Simulations in Matlab 163
Chapter Notes 165
References 166
Problems 167
6 Vibration Suppression 171
6.1 Introduction 171
6.2 Isolators and Absorbers 172
6.3 OptimizationMethods 175
6.4 Metastructures 179
6.5 Design Sensitivity and Redesign 181
6.6 Passive and Active Control 184
6.7 Controllability and Observability 188
6.8 Eigenstructure Assignment 193
6.9 Optimal Control 196
6.10 Observers (Estimators) 203
6.11 Realization 208
6.12 Reduced-Order Modeling 210
6.13 Modal Control in State Space 216
6.14 Modal Control in Physical Space 219
6.15 Robustness 224
6.16 Positive Position Feedback Control 226
6.17 Matlab Commands for Control Calculations 229
Chapter Notes 233
References 234
Problems 237
7 Distributed Parameter Models 241
7.1 Introduction 241
7.2 Equations of Motion 241
7.3 Vibration of Strings 247
7.4 Rods and Bars 252
7.5 Vibration of Beams 256
7.6 Coupled Effects 263
7.7 Membranes and Plates 267
7.8 Layered Materials 271
7.9 Damping Models 273
7.10 Modeling Piezoelectric Wafers 276
Chapter Notes 281
References 281
Problems 283
8 Formal Methods of Solutions 287
8.1 Introduction 287
8.2 Boundary Value Problems and Eigenfunctions 287
8.3 Modal Analysis of the Free Response 290
8.4 Modal Analysis in Damped Systems 292
8.5 Transform Methods 294
8.6 Green's Functions 296
Chapter Notes 300
References 301
Problems 301
9 Operators and the Free Response 303
9.1 Introduction 303
9.2 Hilbert Spaces 304
9.3 Expansion Theorems 308
9.4 Linear Operators 309
9.5 Compact Operators 315
9.6 Theoretical Modal Analysis 317
9.7 Eigenvalue Estimates 318
9.8 Enclosure Theorems 321
Chapter Notes 324
References 324
Problems 325
10 Forced Response and Control 327
10.1 Introduction 327
10.2 Response by Modal Analysis 327
10.3 Modal Design Criteria 330
10.4 Combined Dynamical Systems 332
10.5 Passive Control and Design 336
10.6 Distributed Modal Control 338
10.7 Nonmodal Distributed Control 340
10.8 State Space Control Analysis 341
10.9 Vibration Suppression using Piezoelectric Materials 342
Chapter Notes 344
References 345
Problems 346
11 Approximations of Distributed Parameter Models 349
11.1 Introduction 349
11.2 Modal Truncation 349
11.3 Rayleigh-Ritz-Galerkin Approximations 351
11.4 Finite Element Method 354
11.5 Substructure Analysis 359
11.6 Truncation in the Presence of Control 361
11.7 Impedance Method of Truncation and Control 369
Chapter Notes 371
References 371
Problems 372
12 Vibration Measurement 375
12.1 Introduction 375
12.2 Measurement Hardware 376
12.3 Digital Signal Processing 379
12.4 Random Signal Analysis 383
12.5 Modal Data Extraction (Frequency Domain) 387
12.6 Modal Data Extraction (Time Domain) 390
12.7 Model Identification 395
12.8 Model Updating 397
12.9 Verification and Validation 398
Chapter Notes 400
References 401
Problems 402
A Comments on Units 405
B Supplementary Mathematics 409
Index 413
About the Companion Website xiii
1 Single Degree of Freedom Systems 1
1.1 Introduction 1
1.2 Spring-Mass System 1
1.3 Spring-Mass-Damper System 6
1.4 Forced Response 10
1.5 Transfer Functions and Frequency Methods 17
1.6 Complex Representation and Impedance 23
1.7 Measurement and Testing 25
1.8 Stability 28
1.9 Design and Control of Vibrations 31
1.10 Nonlinear Vibrations 35
1.11 Computing and Simulation in MatlabTM 38
Chapter Notes 43
References 44
Problems 46
2 Lumped Parameter Models 49
2.1 Introduction 49
2.2 Modeling 52
2.3 Classifications of Systems 56
2.4 Feedback Control Systems 57
2.5 Examples 59
2.6 Experimental Models 64
2.7 Nonlinear Models and Equilibrium 65
Chapter Notes 67
References 68
Problems 68
3 Matrices and the Free Response 71
3.1 Introduction 71
3.2 Eigenvalues and Eigenvectors 71
3.3 Natural Frequencies and Mode Shapes 77
3.4 Canonical Forms 86
3.5 Lambda Matrices 91
3.6 Eigenvalue Estimates 94
3.7 Computation Eigenvalue Problems in MATLAB 101
3.8 Numerical Simulation of the Time Response in MATLABtm 104
Chapter Notes 106
References 107
Problems 108
4 Stability 113
4.1 Introduction 113
4.2 Lyapunov Stability 113
4.3 Conservative Systems 116
4.4 Systems with Damping 117
4.5 Semidefinite Damping 118
4.6 Gyroscopic Systems 119
4.7 Damped Gyroscopic Systems 121
4.8 Circulatory Systems 122
4.9 Asymmetric Systems 123
4.10 Feedback Systems 128
4.11 Stability in the State Space 131
4.12 Stability of Nonlinear Systems 133
Chapter Notes 137
References 138
Problems 139
5 Forced Response of Lumped Parameter Systems 143
5.1 Introduction 143
5.2 Response via State SpaceMethods 143
5.3 Decoupling Conditions and Modal Analysis 148
5.4 Response of Systems with Damping 152
5.5 Stability of the Forced Response 155
5.6 Response Bounds 157
5.7 Frequency Response Methods 158
5.8 Stability of Feedback Control 161
5.9 Numerical Simulations in Matlab 163
Chapter Notes 165
References 166
Problems 167
6 Vibration Suppression 171
6.1 Introduction 171
6.2 Isolators and Absorbers 172
6.3 OptimizationMethods 175
6.4 Metastructures 179
6.5 Design Sensitivity and Redesign 181
6.6 Passive and Active Control 184
6.7 Controllability and Observability 188
6.8 Eigenstructure Assignment 193
6.9 Optimal Control 196
6.10 Observers (Estimators) 203
6.11 Realization 208
6.12 Reduced-Order Modeling 210
6.13 Modal Control in State Space 216
6.14 Modal Control in Physical Space 219
6.15 Robustness 224
6.16 Positive Position Feedback Control 226
6.17 Matlab Commands for Control Calculations 229
Chapter Notes 233
References 234
Problems 237
7 Distributed Parameter Models 241
7.1 Introduction 241
7.2 Equations of Motion 241
7.3 Vibration of Strings 247
7.4 Rods and Bars 252
7.5 Vibration of Beams 256
7.6 Coupled Effects 263
7.7 Membranes and Plates 267
7.8 Layered Materials 271
7.9 Damping Models 273
7.10 Modeling Piezoelectric Wafers 276
Chapter Notes 281
References 281
Problems 283
8 Formal Methods of Solutions 287
8.1 Introduction 287
8.2 Boundary Value Problems and Eigenfunctions 287
8.3 Modal Analysis of the Free Response 290
8.4 Modal Analysis in Damped Systems 292
8.5 Transform Methods 294
8.6 Green's Functions 296
Chapter Notes 300
References 301
Problems 301
9 Operators and the Free Response 303
9.1 Introduction 303
9.2 Hilbert Spaces 304
9.3 Expansion Theorems 308
9.4 Linear Operators 309
9.5 Compact Operators 315
9.6 Theoretical Modal Analysis 317
9.7 Eigenvalue Estimates 318
9.8 Enclosure Theorems 321
Chapter Notes 324
References 324
Problems 325
10 Forced Response and Control 327
10.1 Introduction 327
10.2 Response by Modal Analysis 327
10.3 Modal Design Criteria 330
10.4 Combined Dynamical Systems 332
10.5 Passive Control and Design 336
10.6 Distributed Modal Control 338
10.7 Nonmodal Distributed Control 340
10.8 State Space Control Analysis 341
10.9 Vibration Suppression using Piezoelectric Materials 342
Chapter Notes 344
References 345
Problems 346
11 Approximations of Distributed Parameter Models 349
11.1 Introduction 349
11.2 Modal Truncation 349
11.3 Rayleigh-Ritz-Galerkin Approximations 351
11.4 Finite Element Method 354
11.5 Substructure Analysis 359
11.6 Truncation in the Presence of Control 361
11.7 Impedance Method of Truncation and Control 369
Chapter Notes 371
References 371
Problems 372
12 Vibration Measurement 375
12.1 Introduction 375
12.2 Measurement Hardware 376
12.3 Digital Signal Processing 379
12.4 Random Signal Analysis 383
12.5 Modal Data Extraction (Frequency Domain) 387
12.6 Modal Data Extraction (Time Domain) 390
12.7 Model Identification 395
12.8 Model Updating 397
12.9 Verification and Validation 398
Chapter Notes 400
References 401
Problems 402
A Comments on Units 405
B Supplementary Mathematics 409
Index 413