Adalbert Duschek
Vorlesungen über höhere Mathematik
Integration und Differentiation der Funktionen von mehreren Veränderlichen. Lineare Algebra. Tensorfelder. Differentialgeometrie
Adalbert Duschek
Vorlesungen über höhere Mathematik
Integration und Differentiation der Funktionen von mehreren Veränderlichen. Lineare Algebra. Tensorfelder. Differentialgeometrie
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Andere Kunden interessierten sich auch für
- Emanuel CzuberEinführung in die höhere Mathematik43,90 €
- Adalbert DuschekVorlesungen über höhere Mathematik69,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik44,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik49,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik69,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik74,99 €
- Kurt MeybergHöhere Mathematik 144,99 €
-
-
-
Produktdetails
- Verlag: Springer, Wien
- 3., verb. Aufl.
- Seitenzahl: 416
- Erscheinungstermin: 16. September 1963
- Deutsch
- Abmessung: 241mm x 160mm x 27mm
- Gewicht: 786g
- ISBN-13: 9783211806371
- ISBN-10: 3211806377
- Artikelnr.: 09193102
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.