Adalbert Duschek
Vorlesungen über höhere Mathematik
Dritter Band: Gewöhnliche und partielle Differentialgleichungen. Variationsrechnung. Funktionen einer komplexen Veränderlichen
Adalbert Duschek
Vorlesungen über höhere Mathematik
Dritter Band: Gewöhnliche und partielle Differentialgleichungen. Variationsrechnung. Funktionen einer komplexen Veränderlichen
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Andere Kunden interessierten sich auch für
- Adalbert DuschekVorlesungen über höhere Mathematik69,99 €
- Richard CourantVorlesungen über Differential- und Integralrechnung59,99 €
- Richard CourantVorlesungen über Differential- und Integralrechnung49,99 €
- Sherman K. SteinEinführungskurs Höhere Mathematik I49,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik69,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik44,99 €
- Adalbert DuschekVorlesungen über höhere Mathematik74,99 €
-
-
-
Produktdetails
- Verlag: Springer / Springer Berlin Heidelberg / Springer, Berlin
- Artikelnr. des Verlages: 978-3-662-37446-7
- Softcover reprint of the original 1st ed. 1953
- Seitenzahl: 524
- Erscheinungstermin: 1. Januar 1953
- Deutsch
- Abmessung: 240mm x 168mm x 29mm
- Gewicht: 880g
- ISBN-13: 9783662374467
- ISBN-10: 3662374463
- Artikelnr.: 40768338
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.
I. Grundbegriffe.- Differentiation der Funktionen von mehreren Veränderlichen.-
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
1. Ergänzungen aus der Lehre von den Punktmengen.- 1. Ebene Punktmengen.- 2. Der n-dimensionale Raum.- 3. Gebiet und Bereich.- 4. Die Fernpunkte des Gn.- 5. Der Inhalt einer Punktmenge.-
2. Funktionen mehrerer Variabler. Grenzwert und Stetigkeit.- 1. Der allgemeine Funktionsbegriff.- 2. Beispiele.- 3. Zwei- und dreireihige Determinanten.- 4. Der Grenzwert einer Funktion.- 5. Stetige Funktionen.- 6. Die Randwerte einer Funktion.- 7. Zusammengesetzte Funktionen.-
3. Differentiation der Funktionen von mehreren Veränderlichen.- 1. Die partiellen Ableitungen.- 2. Stetigkeit und Differenzierbarkeit.- 3. Der Satz von Schwarz.- 4. Das erste totale Differential einer Funktion von zwei Veränderlichen.- 5. Totale Differentiale im allgemeinen.- 6. Die Differentiation zusammengesetzter Funktionen und die Kettenregel.- 7. Implizite Funktionen.- 8. Zwei Gleichungen zwischen vier Veränderlichen.-
4. Homogene Funktionen.- 1. Definition und Beispiele.- 2. Die Eulereche Differentialgleichung der tetig differenzierbaren homogenen Funktionen.- 3. Binäre quadratische Formen.- 4. Die Hauptachsentransformation der Kegelschnitte.-
5. Die Taylorsche Formel.- 1. Herleitung der Taylorschen Formel.- 2. Der Mittelwertsatz.- 3. Das Taylorpolynom T
1 und die Tangentenebene einer Fläche.- 4. Verallgemeinerung des Newtonschen und des Iterationsverfahrens.- 5. Das Taylorpolynom Tr Die verschiedenen Arten der Punkte eineT
2. Die verschiedenen Arten der Punkte einer Fläche.-
6. Doppelfolgen und Doppelreihen.- 1. Doppelfolgen.- 2. Simultane und sukzessive Grenzübergänge bei stetigen Veränderlichen.- 3. Funktionenfolgen. Ein Satz von DINI.- 4. Doppelreihen.- 5. Potenzreihen in mehreren Veränderlichen.- 6. Taylorsche Reihen in mehreren Veränderlichen..-
7. Koordinatentransformation, Punkttransformation und Abbildung zweier Ebenen oder Räume.- 1. Die Abbildung zweier Ebenen und der Begriff der Koordinatentransfurmation.- 2. Die Punkttransformation oder Abbildung einer Ebene auf sich selbst.- 3. Die geometrische Bedeutung der Funktionaldeterminante.- 4. Abhängige Funktionen.- 5. Die analytische Darstellung der Kurven und Flächen im Raum..- 6. Transformation und Abbildung im Raum.- 7. Die affine Abbildung.- 8. Die projektive Abbildung.- 9. Elliptische oder Lamésche Koordinaten.- 10. Transformationsgruppen.- 11. Zur projektiven Geometrie.-
8. Ebene Kurven.- 1. Tangente, Normale und Berührungsgrößen.- 2. Asymptoten.- 3. Singuläre Punkte.- 4. Berührung von Kurven. Wendepunkte, Krümmungskreis und Scheitel.- 5. Die Krümmung einer Kurve.- 6. Hülkurven.- 7. Evolute und Evolvente.- 8. Spezielle Kurven.- 9. Bemerkungen zur Kurvendiskussion.-
9. Extrema von Funktionen mehrerer Variabler.- 1. Notwendige Bedingungen bei zwei unabhängigen Veränderlichen.- 2. Hinreichende Bedingungen.- 3. Funktionen von n unabhängigen Veränderlichen.- 4. Extrema unter einer Nebenbedingung.- 5. Extrema unter mehreren Nebenbedingungen.- 6. Die Methode der kleinsten Quadrate und die Approximation empirischer Funktionen.-
10. Grundbegriffe der Vektorrechnung.- 1. Punkte, Strecken und Vektoren.- 2. Addition und Subtraktion von Vektoren. Multiplikation eines Vektors mit einer Zahl.- 3. Länge eines Vektors.- 4. Linear abhängige und linear unabhängige Vektoren.- 5. Das innere oder skalare Produkt zweier Vektoren.- 6. Normierte Dreibeine und Maßvektoren.- 7. Das äußere oder vektorielle Produkt von zwei Vektoren.- 8. Geometrische Anwendungen.- 9. Der Schnitt von p Ebenen.- 10. Vektoren als Funktionen eines Parameters. Tangentenvektor einer Raumkurve.- 11. Tangentenebene und Normalenvektor einer Fläche.- 12. Die Richtungsablcitung einer Funktion.- 13. Vektoren in einer Ebene.- II. Die Integration der Funktionen von mehreren Veränderlichen.-
11. Integrale als Funktionen eines Parameters.- 1. Durch bestimmte Integrale dargestellte Funktionen.- 2. Differentiation unter dem Integralzeic
I. Ergänzungen aus der reellen Analysis.- 1. Funktionen von beschränkter Variation. Stieltjesintegrale.- 2. Fourierreihen und Fouriersches Integraltheorem.- 3. Asymptotische Entwicklungen. Die Eulersche Summenformel.- 4. Orthogonale Funktionensysteme.- II. Integralgleichungen und Laplacetransformation.- 5. Grundzüge der allgemeinen Theorie der linearen Integralgleichungen zweiter Art.- 6. Symmetrische Kerne.- 7. Ergänzungen.- 8. Die Laplacetransformation.- III. Randwertprobleme bei gewöhnlichen Differentialgleichungen.- 9. Lineare Differentialgleichungen im komplexen Gebiet.- 10. Randwertaufgaben zweiter Ordnung.- 11. Kugelfunktionen und Legendresche Polynome.- 12. Die Besselschen Funktionen.- 13. Weitere spezielle Funktionen.- IV. Grundzüge der Potentialtheorie.- 14. Die Newtonschen Potentiale.- 15. Die Greenschen Formeln. Eindeutigkeits- und Mittelwertsätze.- 16. Das Verhalten der Potentiale in Quellpunkten.- 17. Allgemeine Vektorfelder.- V. Die Randwertaufgaben der Potentialtheorie.- 18. Die Greensche Funktion.- 19. Lösung der ersten Randwertaufgabe für Kreis und Kugel. Die Sätze von Harnack.- 20. Die Existenzsätze.- Anhang. Lösungen der Aufgaben.- Namenverzeichnis.