The evolution of the physical/ chemical sciences towards understanding the behavior of matter at the molecular level has been accompanied by a rapid increase in studies of the properties and functioning of confined water; that is, water in small clusters and nanoparticles or confined to solid/liquid thin films, surfaces and interfaces. These studies represent a convergence of interests and methodologies. That is, much emerging science, both basic and applied, depends on an understanding of confined water for significant advances; and the technical ability to gain that understanding has evolved only during the past decade or two. Firm concepts of the behavior of water in a variety of confining geometries are basic to advances in molecular biology, weather phenomena, atmospheric chemistry, interstellar and interplanetary physics and chemistry; as weIl as to the complete understanding of properties of macroscopic amounts of water and water-solute systems. In recognition of the growing importance of studies of confined water, a Telluride (Colorado) workshop was convened in August of 2000. This was an exceptionally strong 5-day conference with numerous informative talks by leading scientists on both basic and applied aspects of the subject. Lively discussions left the participants spent.