This third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and…mehr
This third edition builds on the introduction of spectral analysis as a means of investigating wave propagation and transient oscillations in structures. Each chapter of the textbook has been revised, updated and augmented with new material, such as a modified treatment of the curved plate and cylinder problem that yields a relatively simple but accurate spectral analysis. Finite element methods are now integrated into the spectral analyses to gain further insights into the high-frequency problems. In addition, a completely new chapter has been added that deals with waves in periodic and discretized structures. Examples for phononic materials meta-materials as well as genuine atomic systems are given.
James F. Doyle is a professor of Aeronautics and Astronautics at Purdue University. He received a Dip. Eng, from DIT, Ireland; M.Sc. from University of Saskatchewan., Canada; and PhD, from University of Illinois, USA. His main areas of research is experimental and computational mechanics, Wave propagation, and nonlinear structural dynamics; special emphasis is placed on solving inverse problems. He has published a number of book on these topics. Professor Doyle is a dedicated teacher and pedagogical innovator. He is a recipient of the Frocht Award for Teaching and the Hetenyi Award for Research, both from the Society for Experimental Mechanics. He is a Fellow of the Society for Experimental Mechanics.
Inhaltsangabe
Preface.- Notation.- Introduction.- Spectral Analysis of Wave Motion.- Longitudinal Waves in Rods.- Flexural Waves in Beams.- Higher Order Waveguide Models.- The Spectral Element Method.- Waves in Plates and Cylinders.- Thin Walled Structures.- Structure/Fluid Interactions.- Discrete and Discretized Structures.- Afterword.- Appendix: Bessel Functions.- Index.
Preface Notation Introduction 1. Spectral Analysis of Wave Motion 2. Longitudinal Waves in Rods 3. Flxural Waves in Beams 4. Higher Order Waveguides 5. The Spectrual Element Method 6. Waves in Thin Plates 7. Structure/Fluid Interaction 8. Thin-Walled Structures Afterword Bessel Functions Index
Preface.- Notation.- Introduction.- Spectral Analysis of Wave Motion.- Longitudinal Waves in Rods.- Flexural Waves in Beams.- Higher Order Waveguide Models.- The Spectral Element Method.- Waves in Plates and Cylinders.- Thin Walled Structures.- Structure/Fluid Interactions.- Discrete and Discretized Structures.- Afterword.- Appendix: Bessel Functions.- Index.
Preface Notation Introduction 1. Spectral Analysis of Wave Motion 2. Longitudinal Waves in Rods 3. Flxural Waves in Beams 4. Higher Order Waveguides 5. The Spectrual Element Method 6. Waves in Thin Plates 7. Structure/Fluid Interaction 8. Thin-Walled Structures Afterword Bessel Functions Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826