Madan Mohan Panja, Birendra Nath Mandal
Wavelet Based Approximation Schemes for Singular Integral Equations
Madan Mohan Panja, Birendra Nath Mandal
Wavelet Based Approximation Schemes for Singular Integral Equations
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and in applied science and engineering.
Andere Kunden interessierten sich auch für
- Jeffery J. LeaderNumerical Analysis and Scientific Computation83,99 €
- W. KieratDistribution, Integral Transforms and Applications93,99 €
- Steven G KrantzPartial Differential Equations and Complex Analysis90,99 €
- Wolodymyr V PetryshynApproximation-solvability of Nonlinear Functional and Differential Equations91,99 €
- Mark McKibbenDiscovering Evolution Equations with Applications110,99 €
- K. W. MortonRevival77,99 €
- Ivanka StamovaFunctional and Impulsive Differential Equations of Fractional Order71,99 €
-
-
-
The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and in applied science and engineering.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: CRC Press
- Seitenzahl: 300
- Erscheinungstermin: 15. Februar 2022
- Englisch
- Abmessung: 254mm x 178mm x 16mm
- Gewicht: 526g
- ISBN-13: 9780367565541
- ISBN-10: 0367565544
- Artikelnr.: 62573324
- Verlag: CRC Press
- Seitenzahl: 300
- Erscheinungstermin: 15. Februar 2022
- Englisch
- Abmessung: 254mm x 178mm x 16mm
- Gewicht: 526g
- ISBN-13: 9780367565541
- ISBN-10: 0367565544
- Artikelnr.: 62573324
M M Panja has a MSc in Applied Mathematics (1987) from Calcutta University, India, and a PhD (1993) from Visva-Bharati University, India. He investigated the origin of (hidden) geometric phase on quantum mechanical problems and initiated studies on Lie group theoretic approach of differential equations during his postdoctoral research. His investigations (2007) on approximation theory based on multiresolution analysis, has been published several international journals. His current research interests are (i) multiscale approximation based on wavelets, and (ii) similarity (exact) solution of mathematical models involving differential and integral operators. B N Mandal has a MSc in Applied Mathematics (1966) and a PhD (1973) from Calcutta University, India. He was a postdoctoral Commonwealth Fellow at Manchester University, 1973-75. He was faculty at Calcutta University, 1970-89 and later at Indian Statistical Institute (ISI), Kolkata, 1989-2005. He was a NASI Senior Scientist, 2009-14 in ISI. His research work encompasses several areas of applied mathematics including water waves, integral transforms, integral equations, inventory problems, wavelets etc. He has published a number of works with reputable publishers. He has supervised PhD theses of more than 20 candidates and has more than 275 research publications.
Introduction
Singular integral equation
MRA of Function Spaces
Multiresolution analysis of L2(R)
Multiresolution analysis of L2([a, b] ¿ R)
Others
Approximations in Multiscale Basis
Multiscale approximation of functions
Sparse approximation of functions in higher dimensions
Moments
Quadrature rules
Multiscale representation of differential operators
Representation of the derivative of a function in LMW basis
Multiscale representation of integral operators
Estimates of local Holder indices
Error estimates in the multiscale approximation
Nonlinear/Best n-term approximation
Weakly Singular Kernels
Existence and uniqueness
Logarithmic singular kernel
Kernels with algebraic singularity
An Integral Equation with Fixed Singularity
Method based on scale functions in Daubechies family
Cauchy Singular Kernels
Prerequisites
Basis comprising truncated scale functions in Daubechies family
Multiwavelet family
Hypersingular Kernels
Finite part integrals involving hypersingular functions
Existing methods
Reduction to Cauchy singular integro-differential equation
Method based on LMW basis
Singular integral equation
MRA of Function Spaces
Multiresolution analysis of L2(R)
Multiresolution analysis of L2([a, b] ¿ R)
Others
Approximations in Multiscale Basis
Multiscale approximation of functions
Sparse approximation of functions in higher dimensions
Moments
Quadrature rules
Multiscale representation of differential operators
Representation of the derivative of a function in LMW basis
Multiscale representation of integral operators
Estimates of local Holder indices
Error estimates in the multiscale approximation
Nonlinear/Best n-term approximation
Weakly Singular Kernels
Existence and uniqueness
Logarithmic singular kernel
Kernels with algebraic singularity
An Integral Equation with Fixed Singularity
Method based on scale functions in Daubechies family
Cauchy Singular Kernels
Prerequisites
Basis comprising truncated scale functions in Daubechies family
Multiwavelet family
Hypersingular Kernels
Finite part integrals involving hypersingular functions
Existing methods
Reduction to Cauchy singular integro-differential equation
Method based on LMW basis
Introduction
Singular integral equation
MRA of Function Spaces
Multiresolution analysis of L2(R)
Multiresolution analysis of L2([a, b] ¿ R)
Others
Approximations in Multiscale Basis
Multiscale approximation of functions
Sparse approximation of functions in higher dimensions
Moments
Quadrature rules
Multiscale representation of differential operators
Representation of the derivative of a function in LMW basis
Multiscale representation of integral operators
Estimates of local Holder indices
Error estimates in the multiscale approximation
Nonlinear/Best n-term approximation
Weakly Singular Kernels
Existence and uniqueness
Logarithmic singular kernel
Kernels with algebraic singularity
An Integral Equation with Fixed Singularity
Method based on scale functions in Daubechies family
Cauchy Singular Kernels
Prerequisites
Basis comprising truncated scale functions in Daubechies family
Multiwavelet family
Hypersingular Kernels
Finite part integrals involving hypersingular functions
Existing methods
Reduction to Cauchy singular integro-differential equation
Method based on LMW basis
Singular integral equation
MRA of Function Spaces
Multiresolution analysis of L2(R)
Multiresolution analysis of L2([a, b] ¿ R)
Others
Approximations in Multiscale Basis
Multiscale approximation of functions
Sparse approximation of functions in higher dimensions
Moments
Quadrature rules
Multiscale representation of differential operators
Representation of the derivative of a function in LMW basis
Multiscale representation of integral operators
Estimates of local Holder indices
Error estimates in the multiscale approximation
Nonlinear/Best n-term approximation
Weakly Singular Kernels
Existence and uniqueness
Logarithmic singular kernel
Kernels with algebraic singularity
An Integral Equation with Fixed Singularity
Method based on scale functions in Daubechies family
Cauchy Singular Kernels
Prerequisites
Basis comprising truncated scale functions in Daubechies family
Multiwavelet family
Hypersingular Kernels
Finite part integrals involving hypersingular functions
Existing methods
Reduction to Cauchy singular integro-differential equation
Method based on LMW basis