Presenting the latest developments in the field of advanced robust control engineering design techniques for wind turbines applications, this book introduces a concurrent engineering approach to design efficient and reliable controllers for the most critical problems of multi-megawatt wind energy systems. It describes large aerodynamic flexible structures, which are working under very turbulent and unpredictable environmental conditions and are connected to a variable and demanding electrical grid. Exemplifying how to achieve future control challenges in new energy systems, the text also…mehr
Presenting the latest developments in the field of advanced robust control engineering design techniques for wind turbines applications, this book introduces a concurrent engineering approach to design efficient and reliable controllers for the most critical problems of multi-megawatt wind energy systems. It describes large aerodynamic flexible structures, which are working under very turbulent and unpredictable environmental conditions and are connected to a variable and demanding electrical grid. Exemplifying how to achieve future control challenges in new energy systems, the text also explores concurrent engineering methods, advanced quantitative (QFT) robust control techniques, and switching control strategies for critical real-world applications.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Dr. Mario García-Sanz is Professor at Case Western Reserve University (CWRU), Ohio, the Milton and Tamar Maltz Professor in Energy Innovation, and Director of the Wind Energy and Control Systems Center at CWRU. As Senior Advisor for the President of the M.Torres Group and Professor at the Public University of Navarra, he played a central role in the design and field experimentation of advanced multi-megawatt wind turbines for industry. Dr. García-Sanz held visiting professorships at the Control Systems Centre, UMIST (UK, 1995); at Oxford University (UK, 1996); at the Jet Propulsion Laboratory NASA-JPL (California, 2004); and at the European Space Agency ESA-ESTEC (The Netherlands, 2008). He holds 20 industrial patents, has done more than 40 large research projects for industry and space agencies, and is author or coauthor of more than 150 research papers, including the books "Quantitative Feedback Theory: Theory and Applications", Taylor & Francis (2006), and "Wind Energy Systems: Control Engineering Design", Taylor & Francis (2012). Dr. García-Sanz is Subject Editor of the International Journal of Robust and Nonlinear Control, a member of IFAC and IEEE Technical Committees, and served as NATO/RTO Lecture Series Director and as Guest Editor of international journals (Robust control, QFT control, Wind turbine control, Spacecraft control). He was awarded the IEE Heaviside Prize (UK) in 1995 and the BBVA research award (Spain) in 2001. Professor García-Sanz's main research interest focuses on bridging the gap between advanced control theory and applications, with special emphasis in Energy Innovation, Wind Energy, Space, Environmental and Industrial Applications.
Inhaltsangabe
Introduction Part I: Advanced Robust Control Techniques: QFT and Nonlinear Switching Introduction to QFT. MISO Analog QFT Control System. Discrete Quantitative Feedback Technique. Diagonal MIMO QFT. Non-Diagonal MIMO QFT. QFT for Distributed Parameter Systems. Nonlinear Switching Control Techniques. Part II: Wind Turbine Control Introduction to Wind Energy Systems. Standards and Certification for Wind Turbines. Wind Turbine Control Objectives and Strategies. Aerodynamics and Mechanical Modeling of Wind Turbines. Electrical Modeling of Wind Turbines. Advanced Pitch Control System Design. Experimental Results with the Direct-Drive Wind Turbine TWT-1.65. Blades Manufacturing: MIMO QFT Control for Industrial Furnaces. Smart Wind Turbine Blades. Offshore Wind Energy: Overview. Airborne Wind Energy Systems. Appendices. Problems. Answers to Selected Problems. References.
Introduction Part I: Advanced Robust Control Techniques: QFT and Nonlinear Switching Introduction to QFT. MISO Analog QFT Control System. Discrete Quantitative Feedback Technique. Diagonal MIMO QFT. Non-Diagonal MIMO QFT. QFT for Distributed Parameter Systems. Nonlinear Switching Control Techniques. Part II: Wind Turbine Control Introduction to Wind Energy Systems. Standards and Certification for Wind Turbines. Wind Turbine Control Objectives and Strategies. Aerodynamics and Mechanical Modeling of Wind Turbines. Electrical Modeling of Wind Turbines. Advanced Pitch Control System Design. Experimental Results with the Direct-Drive Wind Turbine TWT-1.65. Blades Manufacturing: MIMO QFT Control for Industrial Furnaces. Smart Wind Turbine Blades. Offshore Wind Energy: Overview. Airborne Wind Energy Systems. Appendices. Problems. Answers to Selected Problems. References.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497