Mansoor Shafi / Shigeaki Ogose / Takeshi Hattori (Hgg.)
Wireless Communications in the 21st Century
Herausgegeben:Shafi, Mansoor; Ogose, Shigeaki; Hattori, Takeshi
Mansoor Shafi / Shigeaki Ogose / Takeshi Hattori (Hgg.)
Wireless Communications in the 21st Century
Herausgegeben:Shafi, Mansoor; Ogose, Shigeaki; Hattori, Takeshi
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Das 21. Jahrhundert wird ein Meilenstein der Kommunikationstechnologie werden, aufbauend auf der drahtlosen Kommunikationstechnik, dem Übergang zu optischen Netzwerken und der Ausweitung des Internets. In diesem Band erläutern Experten aktuelle und zukünftige Entwicklungen der drahtlosen Kommunikationstechnik. Dazu wurden die besten Artikel aus den IEEE-Veröffentlichungen zusammengefasst.
Andere Kunden interessierten sich auch für
- David M. PozarMicrowave and RF Design of Wireless Systems344,99 €
- Teik-Kheong TanThe World Wide Wi-Fi146,99 €
- Lajos L. HanzoWireless Video Communications285,99 €
- Tatsuo Itoh / George Haddad / James Harvey (Hgg.)RF Technologies218,99 €
- Vern FotheringhamWireless Broadband146,99 €
- Antonio SanchezDigital Services in the 21st Century152,99 €
- Raj PandyaIntroduction to WLLs23,99 €
-
-
-
Das 21. Jahrhundert wird ein Meilenstein der Kommunikationstechnologie werden, aufbauend auf der drahtlosen Kommunikationstechnik, dem Übergang zu optischen Netzwerken und der Ausweitung des Internets. In diesem Band erläutern Experten aktuelle und zukünftige Entwicklungen der drahtlosen Kommunikationstechnik. Dazu wurden die besten Artikel aus den IEEE-Veröffentlichungen zusammengefasst.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- IEEE Press Series on Digital & Mobile Communication
- Verlag: IEEE Press / Wiley & Sons
- 1. Auflage
- Seitenzahl: 456
- Erscheinungstermin: 19. März 2002
- Englisch
- Abmessung: 260mm x 183mm x 29mm
- Gewicht: 1002g
- ISBN-13: 9780471150411
- ISBN-10: 047115041X
- Artikelnr.: 10073344
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- IEEE Press Series on Digital & Mobile Communication
- Verlag: IEEE Press / Wiley & Sons
- 1. Auflage
- Seitenzahl: 456
- Erscheinungstermin: 19. März 2002
- Englisch
- Abmessung: 260mm x 183mm x 29mm
- Gewicht: 1002g
- ISBN-13: 9780471150411
- ISBN-10: 047115041X
- Artikelnr.: 10073344
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
MANSOOR SHAFI is Principal Advisor on Wireless at Telecom New Zealand. He has been employed by Telecom New Zealand for over 20 years and has published extensively on many subjects relating to the physical layer of communications systems. He is a Fellow of the IEEE and was awarded the ComSoc Public Service Award in 1992. SHIGEAKI OGOSE is engaged in the research and development of the digital mobile communications systems, including PHS, at NTT. He is a member of the Faculty of Engineering, Kagawa University. He received his BSEE and MSEE degrees from Hiroshima University, Japan, and his PhD degree from Kyoto University, Japan. Dr. Ogose is a member of the IEICE. TAKESHI HATTORI does research and development of cellular systems, paging systems, maritime systems, and advanced cordless systems at NTT. A member of the Faculty of Science and Technology, Sophia University, he received BSEE, MSEE, and PhD degrees from the University of Tokyo, Japan, and a PhD degree from Kyoto University, Japan. Professor Hattori is a member of the IEICE.
Preface.
1 Introduction (Mansoor Shaft, Shigeaki Ogose, and Keith Buttenvorth).
1.1 History of Mobile Radio Communications.
1.2 Telecommunication Needs for the 21st Century.
1.3 Data Rate Road Map to 3G.
1.4 Mobile Networks of Tomorrow.
1.5 4G Mobile Systems.
1.6 Handsets.
1.7 Mobility Management in an IP World.
1.8 Mobile IP.
1.9 Spectrum for Mobile Systems.
1.10 Organization of this Book.
1.11 Summary.
Acronyms.
References.
PART 1: Visions of Wireless Communications Applications in the 21st
Century.
2 Vision of Wireless Communications in the 21st Century (Raymond Steele).
2.1 Introduction.
2.2 Current Scene in Wireless Communications.
2.3 3G Scene for the Beginning of the 21st Century.
2.4 Post-3G Systems.
2.5 Global Family of Ad Hoc Networks.
2.6 Peering Through the Future Haze.
References.
3 Wireless Migration to Packet Network: U.S. Viewpoint (Chung Liu and Wayne
Strom).
3.1 Future Wireless Network Vision.
3.2 Future Wireless Network Architecture.
3.3 Wireless Packet Network Evolution.
3.4 Migration of Wireless Radio Access to Packet Data Network (Including
M-IP and GPRS).
3.5 Wireless Packet Network.
3.6 Summary.
References.
4 Vision of Wireless Communications Applications in the 21st Century: A
View from Japan (Mitsutoshi Hatori).
4.1 Introduction 57
4.2 Current Wireless Communications Systems.
4.3 Third-Generation Systems.
4.4 Fourth-Generation Systems.
4.5 Other Future Systems.
4.6 Summary.
References.
PART 2: Developments in International Standards.
5 Developments in International Standards (Jane Brownley, Fran O 'Brien,
Maria Palamara, Derek Richards, and Lynne Sinclair).
5.1 Overview.
5.2 ITU's IMT-2000 Standardization Efforts.
5.3 3G Standardization Consortia.
5.4 Evolving Radio Standards.
5.5 Evolving Network Standards.
5.6 Related Standardization Efforts.
5.7 Summary.
References.
6 Standardization on Broadband Wireless Access: Wireless ATM and IP
(Masahiro Umehira).
6.1 Introduction.
6.2 Standardization Efforts Related to Broadband Wireless Access.
6.3 Standardization on Radio Access Layer.
6.4 Standardization on Mobile ATM.
6.5 Conclusions.
References.
PART 3: Propagation Issues.
7 Multipath Effects Observed for the Radio Channel (Hemy L. Bertoni).
7.1 Introduction.
7.2 Measurement of Multipath Arrivals.
7.3 Multipath Phenomena for Narrowband Excitation.
7.4 Multipath Phenomena for Broadband Excitation.
7.5 Angular Spread for Space-Time Signal Processing.
7.6 Summary.
References.
8 Indoor Propagation Modeling (Homayoun Hashemi).
8.1 Introduction.
8.2 Types of Variations in the Channel.
8.3 Wideband Channel.
8.4 Large-Scale Path Losses.
8.5 rms Delay Spread.
8.6 Spatial Variations of the Channel.
8.7 Temporal Variations of the Channel.
8.8 Comparison Between Indoor and Outdoor Radio Channels.
8.9 Indoor Infrared Channel.
8.10 Conclusions.
References.
9 Propagation Loss Prediction Models (Masaharu Hata).
9.1 Introduction.
9.2 Empirical Models.
9.3 Analytical Models.
9.4 Deterministic Methods.
9.5 Summary.
References.
10 Path-Loss Measurements for Wireless Mobile Systems (Dongsoo Ear and
Howard H. Xia).
10.1 Overview.
10.2 Macrocellular Measurements.
10.3 Microcellular Measurements.
10.4 Indoor Measurements.
10.5 Summary.
References.
Part 4: Technologies.
11 Coding and Modulation for Power-Constrained Wireless Channels (Ezio
Biglieri, Giuseppe Caire, and Giorgio Taricco).
11.1 Introduction.
11.2 Designing a C/M Scheme: The Gaussian Channel Perspective.
11.3 Wireless Channel: A New Perspective.
11.4 Flat Independent Fading Channel.
11.5 Block-Fading Channel.
11.6 Interference-Limited Channel.
11.7 Conclusions.
References.
12 Modulation and Demodulation Techniques for Wireless Communication
Systems (Seiichi Sampei).
12.1 Introduction.
12.2 Outline of Modulation and Demodulation Techniques.
12.3 GMSK.
12.4 QPSK.
12.5 Π/4-QPSK.
12.6 M-ary QAM.
12.7 Pilot Signal-Aided Fading Compensation Techniques.
12.8 Orthogonal Frequency Division Multiplexing.
12.9 Adaptive Modulation.
12.10 Summary.
References.
13 Fundamentals of Multiple Access Techniques (Fumiyuki Adachi).
13.1 Introduction.
13.2 Multiple Access Techniques.
13.3 Demand-Assign-Based Multiple Access.
13.4 Random Multiple Access.
13.5 Summary.
References.
14 Spatial-Temporal Signal Processing for Broadband Wireless Systems
(David Falconer).
14.1 Introduction: Motivation and Configurations for Space-Time Processing.
14.2 Channel Models for Multielement Arrays.
14.3 Receiver Space-Time Processing.
14.4 Recent Space-Time Wireless Communication Architectures.
14.5 Adaptation Issues.
14.6 Transmitter Space-Time Processing.
14.7 Conclusions and Future Applications.
References.
15 Interference Cancellation and Multiuser Detection (Ryuji Kohno).
15.1 Introduction.
15.2 CDMA System Model.
15.3 Multiuser Detection for CDMA.
15.4 Co-Channel Interference Cancellation for DS/CDMA.
15.5 Co-Channel Interference Cancellation for FH/CDMA.
15.6 Concluding Remarks.
References.
PART 5: Wireless Systems and Applications.
16 EDGE: Enhanced Data Rates for GSM and TDMA/136 Evolution (Stefan
Jäverbring).
16.1 Introduction.
16.2 Background.
16.3 Physical Layer.
16.4 Link Layer.
16.5 EGPRS Performance.
16.6 Conclusions.
References
17 Continuing Evolution of CDMA into New and Improved Services (Andrew J.
Viterbi).
17.1 Commercial CDMA: A Brief Condensed History.
17.2 System Features of Code Division Multiple Access.
17.3 Early CDMA Evolution for Data Services.
17.4 Improvement and Evolution to CDMA 2000.
17.5 Generational Evolution and Emphasis on Wider Band widths.
17.6 Alternate Implementation of Wider Band CDMA.
17.7 Reexamining the Goal: Wireless High-Speed Data Transmission.
17.8 CDMA/HDR for High-Speed Wireless Internet Access.
17.9 Implementation of CDMA/HDR.
17.10 Summary and Concluding Remarks.
References.
18 WCDMA Radio Access Technology for Third-Generation Mobile Communication
(Erik Dahlman, Fredrik Ovesjo, Per Beming, Christiaan Roobol, Magnus
Persson, Jens Knutsson, and Joakim Sorelius).
18.1 Introduction.
18.2 Background to WCDMA.
18.3 UMTS/IMT-2000 System Overview.
18.4 WCDMA Radio Protocol Operation.
18.5 WCDMA Physical Layer.
18.6 WCDMA Radio Resource Management.
18.7 Performance-Enhancing Technologies.
References.
19 New Systems for Personal Communications via Satellite (J. V Evans).
19.1 Introduction.
19.2 Mobile Satellite Services.
19.3 Proposed Global Satellite Phone System Designs.
19.4 Data and Multimedia Services.
19.5 Concluding Remarks.
PART 6: Wireless ATM Networks.
20 Wireless ATM Networks (D. Raychaudhuri, P. Narasimhan, B. Rajagopalan,
and D. Reininger).
20.1 Introduction.
20.2 Wireless ATM Architecture.
20.3 WATM Radio Access Layer.
20.4 Mobile ATM Network.
20.5 QoS Control in Wireless ATM.
20.6 Concluding Remarks.
References.
Index.
About the Editors.
1 Introduction (Mansoor Shaft, Shigeaki Ogose, and Keith Buttenvorth).
1.1 History of Mobile Radio Communications.
1.2 Telecommunication Needs for the 21st Century.
1.3 Data Rate Road Map to 3G.
1.4 Mobile Networks of Tomorrow.
1.5 4G Mobile Systems.
1.6 Handsets.
1.7 Mobility Management in an IP World.
1.8 Mobile IP.
1.9 Spectrum for Mobile Systems.
1.10 Organization of this Book.
1.11 Summary.
Acronyms.
References.
PART 1: Visions of Wireless Communications Applications in the 21st
Century.
2 Vision of Wireless Communications in the 21st Century (Raymond Steele).
2.1 Introduction.
2.2 Current Scene in Wireless Communications.
2.3 3G Scene for the Beginning of the 21st Century.
2.4 Post-3G Systems.
2.5 Global Family of Ad Hoc Networks.
2.6 Peering Through the Future Haze.
References.
3 Wireless Migration to Packet Network: U.S. Viewpoint (Chung Liu and Wayne
Strom).
3.1 Future Wireless Network Vision.
3.2 Future Wireless Network Architecture.
3.3 Wireless Packet Network Evolution.
3.4 Migration of Wireless Radio Access to Packet Data Network (Including
M-IP and GPRS).
3.5 Wireless Packet Network.
3.6 Summary.
References.
4 Vision of Wireless Communications Applications in the 21st Century: A
View from Japan (Mitsutoshi Hatori).
4.1 Introduction 57
4.2 Current Wireless Communications Systems.
4.3 Third-Generation Systems.
4.4 Fourth-Generation Systems.
4.5 Other Future Systems.
4.6 Summary.
References.
PART 2: Developments in International Standards.
5 Developments in International Standards (Jane Brownley, Fran O 'Brien,
Maria Palamara, Derek Richards, and Lynne Sinclair).
5.1 Overview.
5.2 ITU's IMT-2000 Standardization Efforts.
5.3 3G Standardization Consortia.
5.4 Evolving Radio Standards.
5.5 Evolving Network Standards.
5.6 Related Standardization Efforts.
5.7 Summary.
References.
6 Standardization on Broadband Wireless Access: Wireless ATM and IP
(Masahiro Umehira).
6.1 Introduction.
6.2 Standardization Efforts Related to Broadband Wireless Access.
6.3 Standardization on Radio Access Layer.
6.4 Standardization on Mobile ATM.
6.5 Conclusions.
References.
PART 3: Propagation Issues.
7 Multipath Effects Observed for the Radio Channel (Hemy L. Bertoni).
7.1 Introduction.
7.2 Measurement of Multipath Arrivals.
7.3 Multipath Phenomena for Narrowband Excitation.
7.4 Multipath Phenomena for Broadband Excitation.
7.5 Angular Spread for Space-Time Signal Processing.
7.6 Summary.
References.
8 Indoor Propagation Modeling (Homayoun Hashemi).
8.1 Introduction.
8.2 Types of Variations in the Channel.
8.3 Wideband Channel.
8.4 Large-Scale Path Losses.
8.5 rms Delay Spread.
8.6 Spatial Variations of the Channel.
8.7 Temporal Variations of the Channel.
8.8 Comparison Between Indoor and Outdoor Radio Channels.
8.9 Indoor Infrared Channel.
8.10 Conclusions.
References.
9 Propagation Loss Prediction Models (Masaharu Hata).
9.1 Introduction.
9.2 Empirical Models.
9.3 Analytical Models.
9.4 Deterministic Methods.
9.5 Summary.
References.
10 Path-Loss Measurements for Wireless Mobile Systems (Dongsoo Ear and
Howard H. Xia).
10.1 Overview.
10.2 Macrocellular Measurements.
10.3 Microcellular Measurements.
10.4 Indoor Measurements.
10.5 Summary.
References.
Part 4: Technologies.
11 Coding and Modulation for Power-Constrained Wireless Channels (Ezio
Biglieri, Giuseppe Caire, and Giorgio Taricco).
11.1 Introduction.
11.2 Designing a C/M Scheme: The Gaussian Channel Perspective.
11.3 Wireless Channel: A New Perspective.
11.4 Flat Independent Fading Channel.
11.5 Block-Fading Channel.
11.6 Interference-Limited Channel.
11.7 Conclusions.
References.
12 Modulation and Demodulation Techniques for Wireless Communication
Systems (Seiichi Sampei).
12.1 Introduction.
12.2 Outline of Modulation and Demodulation Techniques.
12.3 GMSK.
12.4 QPSK.
12.5 Π/4-QPSK.
12.6 M-ary QAM.
12.7 Pilot Signal-Aided Fading Compensation Techniques.
12.8 Orthogonal Frequency Division Multiplexing.
12.9 Adaptive Modulation.
12.10 Summary.
References.
13 Fundamentals of Multiple Access Techniques (Fumiyuki Adachi).
13.1 Introduction.
13.2 Multiple Access Techniques.
13.3 Demand-Assign-Based Multiple Access.
13.4 Random Multiple Access.
13.5 Summary.
References.
14 Spatial-Temporal Signal Processing for Broadband Wireless Systems
(David Falconer).
14.1 Introduction: Motivation and Configurations for Space-Time Processing.
14.2 Channel Models for Multielement Arrays.
14.3 Receiver Space-Time Processing.
14.4 Recent Space-Time Wireless Communication Architectures.
14.5 Adaptation Issues.
14.6 Transmitter Space-Time Processing.
14.7 Conclusions and Future Applications.
References.
15 Interference Cancellation and Multiuser Detection (Ryuji Kohno).
15.1 Introduction.
15.2 CDMA System Model.
15.3 Multiuser Detection for CDMA.
15.4 Co-Channel Interference Cancellation for DS/CDMA.
15.5 Co-Channel Interference Cancellation for FH/CDMA.
15.6 Concluding Remarks.
References.
PART 5: Wireless Systems and Applications.
16 EDGE: Enhanced Data Rates for GSM and TDMA/136 Evolution (Stefan
Jäverbring).
16.1 Introduction.
16.2 Background.
16.3 Physical Layer.
16.4 Link Layer.
16.5 EGPRS Performance.
16.6 Conclusions.
References
17 Continuing Evolution of CDMA into New and Improved Services (Andrew J.
Viterbi).
17.1 Commercial CDMA: A Brief Condensed History.
17.2 System Features of Code Division Multiple Access.
17.3 Early CDMA Evolution for Data Services.
17.4 Improvement and Evolution to CDMA 2000.
17.5 Generational Evolution and Emphasis on Wider Band widths.
17.6 Alternate Implementation of Wider Band CDMA.
17.7 Reexamining the Goal: Wireless High-Speed Data Transmission.
17.8 CDMA/HDR for High-Speed Wireless Internet Access.
17.9 Implementation of CDMA/HDR.
17.10 Summary and Concluding Remarks.
References.
18 WCDMA Radio Access Technology for Third-Generation Mobile Communication
(Erik Dahlman, Fredrik Ovesjo, Per Beming, Christiaan Roobol, Magnus
Persson, Jens Knutsson, and Joakim Sorelius).
18.1 Introduction.
18.2 Background to WCDMA.
18.3 UMTS/IMT-2000 System Overview.
18.4 WCDMA Radio Protocol Operation.
18.5 WCDMA Physical Layer.
18.6 WCDMA Radio Resource Management.
18.7 Performance-Enhancing Technologies.
References.
19 New Systems for Personal Communications via Satellite (J. V Evans).
19.1 Introduction.
19.2 Mobile Satellite Services.
19.3 Proposed Global Satellite Phone System Designs.
19.4 Data and Multimedia Services.
19.5 Concluding Remarks.
PART 6: Wireless ATM Networks.
20 Wireless ATM Networks (D. Raychaudhuri, P. Narasimhan, B. Rajagopalan,
and D. Reininger).
20.1 Introduction.
20.2 Wireless ATM Architecture.
20.3 WATM Radio Access Layer.
20.4 Mobile ATM Network.
20.5 QoS Control in Wireless ATM.
20.6 Concluding Remarks.
References.
Index.
About the Editors.
Preface.
1 Introduction (Mansoor Shaft, Shigeaki Ogose, and Keith Buttenvorth).
1.1 History of Mobile Radio Communications.
1.2 Telecommunication Needs for the 21st Century.
1.3 Data Rate Road Map to 3G.
1.4 Mobile Networks of Tomorrow.
1.5 4G Mobile Systems.
1.6 Handsets.
1.7 Mobility Management in an IP World.
1.8 Mobile IP.
1.9 Spectrum for Mobile Systems.
1.10 Organization of this Book.
1.11 Summary.
Acronyms.
References.
PART 1: Visions of Wireless Communications Applications in the 21st
Century.
2 Vision of Wireless Communications in the 21st Century (Raymond Steele).
2.1 Introduction.
2.2 Current Scene in Wireless Communications.
2.3 3G Scene for the Beginning of the 21st Century.
2.4 Post-3G Systems.
2.5 Global Family of Ad Hoc Networks.
2.6 Peering Through the Future Haze.
References.
3 Wireless Migration to Packet Network: U.S. Viewpoint (Chung Liu and Wayne
Strom).
3.1 Future Wireless Network Vision.
3.2 Future Wireless Network Architecture.
3.3 Wireless Packet Network Evolution.
3.4 Migration of Wireless Radio Access to Packet Data Network (Including
M-IP and GPRS).
3.5 Wireless Packet Network.
3.6 Summary.
References.
4 Vision of Wireless Communications Applications in the 21st Century: A
View from Japan (Mitsutoshi Hatori).
4.1 Introduction 57
4.2 Current Wireless Communications Systems.
4.3 Third-Generation Systems.
4.4 Fourth-Generation Systems.
4.5 Other Future Systems.
4.6 Summary.
References.
PART 2: Developments in International Standards.
5 Developments in International Standards (Jane Brownley, Fran O 'Brien,
Maria Palamara, Derek Richards, and Lynne Sinclair).
5.1 Overview.
5.2 ITU's IMT-2000 Standardization Efforts.
5.3 3G Standardization Consortia.
5.4 Evolving Radio Standards.
5.5 Evolving Network Standards.
5.6 Related Standardization Efforts.
5.7 Summary.
References.
6 Standardization on Broadband Wireless Access: Wireless ATM and IP
(Masahiro Umehira).
6.1 Introduction.
6.2 Standardization Efforts Related to Broadband Wireless Access.
6.3 Standardization on Radio Access Layer.
6.4 Standardization on Mobile ATM.
6.5 Conclusions.
References.
PART 3: Propagation Issues.
7 Multipath Effects Observed for the Radio Channel (Hemy L. Bertoni).
7.1 Introduction.
7.2 Measurement of Multipath Arrivals.
7.3 Multipath Phenomena for Narrowband Excitation.
7.4 Multipath Phenomena for Broadband Excitation.
7.5 Angular Spread for Space-Time Signal Processing.
7.6 Summary.
References.
8 Indoor Propagation Modeling (Homayoun Hashemi).
8.1 Introduction.
8.2 Types of Variations in the Channel.
8.3 Wideband Channel.
8.4 Large-Scale Path Losses.
8.5 rms Delay Spread.
8.6 Spatial Variations of the Channel.
8.7 Temporal Variations of the Channel.
8.8 Comparison Between Indoor and Outdoor Radio Channels.
8.9 Indoor Infrared Channel.
8.10 Conclusions.
References.
9 Propagation Loss Prediction Models (Masaharu Hata).
9.1 Introduction.
9.2 Empirical Models.
9.3 Analytical Models.
9.4 Deterministic Methods.
9.5 Summary.
References.
10 Path-Loss Measurements for Wireless Mobile Systems (Dongsoo Ear and
Howard H. Xia).
10.1 Overview.
10.2 Macrocellular Measurements.
10.3 Microcellular Measurements.
10.4 Indoor Measurements.
10.5 Summary.
References.
Part 4: Technologies.
11 Coding and Modulation for Power-Constrained Wireless Channels (Ezio
Biglieri, Giuseppe Caire, and Giorgio Taricco).
11.1 Introduction.
11.2 Designing a C/M Scheme: The Gaussian Channel Perspective.
11.3 Wireless Channel: A New Perspective.
11.4 Flat Independent Fading Channel.
11.5 Block-Fading Channel.
11.6 Interference-Limited Channel.
11.7 Conclusions.
References.
12 Modulation and Demodulation Techniques for Wireless Communication
Systems (Seiichi Sampei).
12.1 Introduction.
12.2 Outline of Modulation and Demodulation Techniques.
12.3 GMSK.
12.4 QPSK.
12.5 Π/4-QPSK.
12.6 M-ary QAM.
12.7 Pilot Signal-Aided Fading Compensation Techniques.
12.8 Orthogonal Frequency Division Multiplexing.
12.9 Adaptive Modulation.
12.10 Summary.
References.
13 Fundamentals of Multiple Access Techniques (Fumiyuki Adachi).
13.1 Introduction.
13.2 Multiple Access Techniques.
13.3 Demand-Assign-Based Multiple Access.
13.4 Random Multiple Access.
13.5 Summary.
References.
14 Spatial-Temporal Signal Processing for Broadband Wireless Systems
(David Falconer).
14.1 Introduction: Motivation and Configurations for Space-Time Processing.
14.2 Channel Models for Multielement Arrays.
14.3 Receiver Space-Time Processing.
14.4 Recent Space-Time Wireless Communication Architectures.
14.5 Adaptation Issues.
14.6 Transmitter Space-Time Processing.
14.7 Conclusions and Future Applications.
References.
15 Interference Cancellation and Multiuser Detection (Ryuji Kohno).
15.1 Introduction.
15.2 CDMA System Model.
15.3 Multiuser Detection for CDMA.
15.4 Co-Channel Interference Cancellation for DS/CDMA.
15.5 Co-Channel Interference Cancellation for FH/CDMA.
15.6 Concluding Remarks.
References.
PART 5: Wireless Systems and Applications.
16 EDGE: Enhanced Data Rates for GSM and TDMA/136 Evolution (Stefan
Jäverbring).
16.1 Introduction.
16.2 Background.
16.3 Physical Layer.
16.4 Link Layer.
16.5 EGPRS Performance.
16.6 Conclusions.
References
17 Continuing Evolution of CDMA into New and Improved Services (Andrew J.
Viterbi).
17.1 Commercial CDMA: A Brief Condensed History.
17.2 System Features of Code Division Multiple Access.
17.3 Early CDMA Evolution for Data Services.
17.4 Improvement and Evolution to CDMA 2000.
17.5 Generational Evolution and Emphasis on Wider Band widths.
17.6 Alternate Implementation of Wider Band CDMA.
17.7 Reexamining the Goal: Wireless High-Speed Data Transmission.
17.8 CDMA/HDR for High-Speed Wireless Internet Access.
17.9 Implementation of CDMA/HDR.
17.10 Summary and Concluding Remarks.
References.
18 WCDMA Radio Access Technology for Third-Generation Mobile Communication
(Erik Dahlman, Fredrik Ovesjo, Per Beming, Christiaan Roobol, Magnus
Persson, Jens Knutsson, and Joakim Sorelius).
18.1 Introduction.
18.2 Background to WCDMA.
18.3 UMTS/IMT-2000 System Overview.
18.4 WCDMA Radio Protocol Operation.
18.5 WCDMA Physical Layer.
18.6 WCDMA Radio Resource Management.
18.7 Performance-Enhancing Technologies.
References.
19 New Systems for Personal Communications via Satellite (J. V Evans).
19.1 Introduction.
19.2 Mobile Satellite Services.
19.3 Proposed Global Satellite Phone System Designs.
19.4 Data and Multimedia Services.
19.5 Concluding Remarks.
PART 6: Wireless ATM Networks.
20 Wireless ATM Networks (D. Raychaudhuri, P. Narasimhan, B. Rajagopalan,
and D. Reininger).
20.1 Introduction.
20.2 Wireless ATM Architecture.
20.3 WATM Radio Access Layer.
20.4 Mobile ATM Network.
20.5 QoS Control in Wireless ATM.
20.6 Concluding Remarks.
References.
Index.
About the Editors.
1 Introduction (Mansoor Shaft, Shigeaki Ogose, and Keith Buttenvorth).
1.1 History of Mobile Radio Communications.
1.2 Telecommunication Needs for the 21st Century.
1.3 Data Rate Road Map to 3G.
1.4 Mobile Networks of Tomorrow.
1.5 4G Mobile Systems.
1.6 Handsets.
1.7 Mobility Management in an IP World.
1.8 Mobile IP.
1.9 Spectrum for Mobile Systems.
1.10 Organization of this Book.
1.11 Summary.
Acronyms.
References.
PART 1: Visions of Wireless Communications Applications in the 21st
Century.
2 Vision of Wireless Communications in the 21st Century (Raymond Steele).
2.1 Introduction.
2.2 Current Scene in Wireless Communications.
2.3 3G Scene for the Beginning of the 21st Century.
2.4 Post-3G Systems.
2.5 Global Family of Ad Hoc Networks.
2.6 Peering Through the Future Haze.
References.
3 Wireless Migration to Packet Network: U.S. Viewpoint (Chung Liu and Wayne
Strom).
3.1 Future Wireless Network Vision.
3.2 Future Wireless Network Architecture.
3.3 Wireless Packet Network Evolution.
3.4 Migration of Wireless Radio Access to Packet Data Network (Including
M-IP and GPRS).
3.5 Wireless Packet Network.
3.6 Summary.
References.
4 Vision of Wireless Communications Applications in the 21st Century: A
View from Japan (Mitsutoshi Hatori).
4.1 Introduction 57
4.2 Current Wireless Communications Systems.
4.3 Third-Generation Systems.
4.4 Fourth-Generation Systems.
4.5 Other Future Systems.
4.6 Summary.
References.
PART 2: Developments in International Standards.
5 Developments in International Standards (Jane Brownley, Fran O 'Brien,
Maria Palamara, Derek Richards, and Lynne Sinclair).
5.1 Overview.
5.2 ITU's IMT-2000 Standardization Efforts.
5.3 3G Standardization Consortia.
5.4 Evolving Radio Standards.
5.5 Evolving Network Standards.
5.6 Related Standardization Efforts.
5.7 Summary.
References.
6 Standardization on Broadband Wireless Access: Wireless ATM and IP
(Masahiro Umehira).
6.1 Introduction.
6.2 Standardization Efforts Related to Broadband Wireless Access.
6.3 Standardization on Radio Access Layer.
6.4 Standardization on Mobile ATM.
6.5 Conclusions.
References.
PART 3: Propagation Issues.
7 Multipath Effects Observed for the Radio Channel (Hemy L. Bertoni).
7.1 Introduction.
7.2 Measurement of Multipath Arrivals.
7.3 Multipath Phenomena for Narrowband Excitation.
7.4 Multipath Phenomena for Broadband Excitation.
7.5 Angular Spread for Space-Time Signal Processing.
7.6 Summary.
References.
8 Indoor Propagation Modeling (Homayoun Hashemi).
8.1 Introduction.
8.2 Types of Variations in the Channel.
8.3 Wideband Channel.
8.4 Large-Scale Path Losses.
8.5 rms Delay Spread.
8.6 Spatial Variations of the Channel.
8.7 Temporal Variations of the Channel.
8.8 Comparison Between Indoor and Outdoor Radio Channels.
8.9 Indoor Infrared Channel.
8.10 Conclusions.
References.
9 Propagation Loss Prediction Models (Masaharu Hata).
9.1 Introduction.
9.2 Empirical Models.
9.3 Analytical Models.
9.4 Deterministic Methods.
9.5 Summary.
References.
10 Path-Loss Measurements for Wireless Mobile Systems (Dongsoo Ear and
Howard H. Xia).
10.1 Overview.
10.2 Macrocellular Measurements.
10.3 Microcellular Measurements.
10.4 Indoor Measurements.
10.5 Summary.
References.
Part 4: Technologies.
11 Coding and Modulation for Power-Constrained Wireless Channels (Ezio
Biglieri, Giuseppe Caire, and Giorgio Taricco).
11.1 Introduction.
11.2 Designing a C/M Scheme: The Gaussian Channel Perspective.
11.3 Wireless Channel: A New Perspective.
11.4 Flat Independent Fading Channel.
11.5 Block-Fading Channel.
11.6 Interference-Limited Channel.
11.7 Conclusions.
References.
12 Modulation and Demodulation Techniques for Wireless Communication
Systems (Seiichi Sampei).
12.1 Introduction.
12.2 Outline of Modulation and Demodulation Techniques.
12.3 GMSK.
12.4 QPSK.
12.5 Π/4-QPSK.
12.6 M-ary QAM.
12.7 Pilot Signal-Aided Fading Compensation Techniques.
12.8 Orthogonal Frequency Division Multiplexing.
12.9 Adaptive Modulation.
12.10 Summary.
References.
13 Fundamentals of Multiple Access Techniques (Fumiyuki Adachi).
13.1 Introduction.
13.2 Multiple Access Techniques.
13.3 Demand-Assign-Based Multiple Access.
13.4 Random Multiple Access.
13.5 Summary.
References.
14 Spatial-Temporal Signal Processing for Broadband Wireless Systems
(David Falconer).
14.1 Introduction: Motivation and Configurations for Space-Time Processing.
14.2 Channel Models for Multielement Arrays.
14.3 Receiver Space-Time Processing.
14.4 Recent Space-Time Wireless Communication Architectures.
14.5 Adaptation Issues.
14.6 Transmitter Space-Time Processing.
14.7 Conclusions and Future Applications.
References.
15 Interference Cancellation and Multiuser Detection (Ryuji Kohno).
15.1 Introduction.
15.2 CDMA System Model.
15.3 Multiuser Detection for CDMA.
15.4 Co-Channel Interference Cancellation for DS/CDMA.
15.5 Co-Channel Interference Cancellation for FH/CDMA.
15.6 Concluding Remarks.
References.
PART 5: Wireless Systems and Applications.
16 EDGE: Enhanced Data Rates for GSM and TDMA/136 Evolution (Stefan
Jäverbring).
16.1 Introduction.
16.2 Background.
16.3 Physical Layer.
16.4 Link Layer.
16.5 EGPRS Performance.
16.6 Conclusions.
References
17 Continuing Evolution of CDMA into New and Improved Services (Andrew J.
Viterbi).
17.1 Commercial CDMA: A Brief Condensed History.
17.2 System Features of Code Division Multiple Access.
17.3 Early CDMA Evolution for Data Services.
17.4 Improvement and Evolution to CDMA 2000.
17.5 Generational Evolution and Emphasis on Wider Band widths.
17.6 Alternate Implementation of Wider Band CDMA.
17.7 Reexamining the Goal: Wireless High-Speed Data Transmission.
17.8 CDMA/HDR for High-Speed Wireless Internet Access.
17.9 Implementation of CDMA/HDR.
17.10 Summary and Concluding Remarks.
References.
18 WCDMA Radio Access Technology for Third-Generation Mobile Communication
(Erik Dahlman, Fredrik Ovesjo, Per Beming, Christiaan Roobol, Magnus
Persson, Jens Knutsson, and Joakim Sorelius).
18.1 Introduction.
18.2 Background to WCDMA.
18.3 UMTS/IMT-2000 System Overview.
18.4 WCDMA Radio Protocol Operation.
18.5 WCDMA Physical Layer.
18.6 WCDMA Radio Resource Management.
18.7 Performance-Enhancing Technologies.
References.
19 New Systems for Personal Communications via Satellite (J. V Evans).
19.1 Introduction.
19.2 Mobile Satellite Services.
19.3 Proposed Global Satellite Phone System Designs.
19.4 Data and Multimedia Services.
19.5 Concluding Remarks.
PART 6: Wireless ATM Networks.
20 Wireless ATM Networks (D. Raychaudhuri, P. Narasimhan, B. Rajagopalan,
and D. Reininger).
20.1 Introduction.
20.2 Wireless ATM Architecture.
20.3 WATM Radio Access Layer.
20.4 Mobile ATM Network.
20.5 QoS Control in Wireless ATM.
20.6 Concluding Remarks.
References.
Index.
About the Editors.