This book offers a detailed account and discussion of Ludwig Wittgenstein's philosophy of mathematics. In Part I, the stage is set with a brief presentation of Frege's logicist attempt to provide arithmetic with a foundation and Wittgenstein's criticisms of it, followed by sketches of Wittgenstein's early views of mathematics, in the Tractatus and in the early 1930s. Then (in Part II), Wittgenstein's mature philosophy of mathematics (1937-44) is carefully presented and examined. Schroeder explains that it is based on two key ideas: the calculus view and the grammar view. On the one hand,…mehr
This book offers a detailed account and discussion of Ludwig Wittgenstein's philosophy of mathematics. In Part I, the stage is set with a brief presentation of Frege's logicist attempt to provide arithmetic with a foundation and Wittgenstein's criticisms of it, followed by sketches of Wittgenstein's early views of mathematics, in the Tractatus and in the early 1930s. Then (in Part II), Wittgenstein's mature philosophy of mathematics (1937-44) is carefully presented and examined. Schroeder explains that it is based on two key ideas: the calculus view and the grammar view. On the one hand, mathematics is seen as a human activity - calculation - rather than a theory. On the other hand, the results of mathematical calculations serve as grammatical norms. The following chapters (on mathematics as grammar; rule-following; conventionalism; the empirical basis of mathematics; the role of proof) explore the tension between those two key ideas and suggest a way in which it can be resolved. Finally, there are chapters analysing and defending Wittgenstein's provocative views on Hilbert's Formalism and the quest for consistency proofs and on Gödel's incompleteness theorems.
Severin Schroeder is Associate Professor of Philosophy at the University of Reading. He has published three monographs on Wittgenstein: Wittgenstein: The Way Out of the Fly Bottle (2006), Wittgenstein Lesen (2009), and Das Privatsprachen-Argument (1998). He is the editor of Wittgenstein and Contemporary Philosophy of Mind (2001) and Philosophy of Literature (2010).
Inhaltsangabe
Preface viii
List of Abbreviations xii
PART I
Background 1
1 Foundations of Mathematics 3
2 Logicism 9
2.1 Frege's Logicism 9
2.2 The Class Paradox and Russell's Theory of Types 12
2.3 Tractatus Logico-Philosophicus: Logicism Without Classes 13
3 Wittgenstein's Critique of Logicism 15
3.1 Can Equality of Number Be Defined in Terms of One-to-One Correlation? 15
3.2 Frege's (and Russell's) Definition of Numbers as Equivalence Classes Is Not Constructive: It Doesn't Provide a Method of Identifying Numbers 21
3.3 Platonism 22
3.4 Russell's Reconstructions of False Equations Are Not Contradictions 26
3.5 Frege's and Russell's Formalisation of Sums as Logical Truths Cannot Be Foundational as It Presupposes Arithmetic 27
3.6 Even If We Assumed (for Argument's Sake) That All Arithmetic Could Be Reproduced in Russell's Logical Calculus, That Would Not Make the Latter a Foundation of Arithmetic 31
4 The Development of Wittgenstein's Philosophy of
Mathematics: Tractatus to The Big Typescript 35
4.1 Tractatus Logico-Philosophicus 35
4.2 Philosophical Remarks (MSS 105-8: 1929-30) to The Big Typescript (TS 213: 1933) 36
PART II
Wittgenstein's Mature Philosophy of Mathematics
(1937-44) 55
5 The Two Strands in Wittgenstein's Later Philosophy of Mathematics 57
6 Mathematics as Grammar 59
7 Rule-Following 78
7.1 Rule-Following and Community 88
8 Conventionalism 93
8.1 Quine's Circularity Objection 95
8.2 Dummett's Objection That Conventionalism Cannot Explain Logical Inferences 101
2.2 The Class Paradox and Russell's Theory of Types 12
2.3 Tractatus Logico-Philosophicus: Logicism Without Classes 13
3 Wittgenstein's Critique of Logicism 15
3.1 Can Equality of Number Be Defined in Terms of One-to-One Correlation? 15
3.2 Frege's (and Russell's) Definition of Numbers as Equivalence Classes Is Not Constructive: It Doesn't Provide a Method of Identifying Numbers 21
3.3 Platonism 22
3.4 Russell's Reconstructions of False Equations Are Not Contradictions 26
3.5 Frege's and Russell's Formalisation of Sums as Logical Truths Cannot Be Foundational as It Presupposes Arithmetic 27
3.6 Even If We Assumed (for Argument's Sake) That All Arithmetic Could Be Reproduced in Russell's Logical Calculus, That Would Not Make the Latter a Foundation of Arithmetic 31
4 The Development of Wittgenstein's Philosophy of
Mathematics: Tractatus to The Big Typescript 35
4.1 Tractatus Logico-Philosophicus 35
4.2 Philosophical Remarks (MSS 105-8: 1929-30) to The Big Typescript (TS 213: 1933) 36
PART II
Wittgenstein's Mature Philosophy of Mathematics
(1937-44) 55
5 The Two Strands in Wittgenstein's Later Philosophy of Mathematics 57
6 Mathematics as Grammar 59
7 Rule-Following 78
7.1 Rule-Following and Community 88
8 Conventionalism 93
8.1 Quine's Circularity Objection 95
8.2 Dummett's Objection That Conventionalism Cannot Explain Logical Inferences 101