22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! Such a sum will typically have a pole at s=4, due to the bulk contributions of the quantum field in three space dimensions. However, it may be analytically continued to s=0 where hopefully there is no pole, thus giving a finite value to the expression. A detailed example of this regularization at work is given in the article on the Casimir effect, where the resulting sum is very explicitly the Riemann zeta-function. The zeta-regularization is useful as it can often be used in a way such that the various symmetries of the physical system are…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
High Quality Content by WIKIPEDIA articles! Such a sum will typically have a pole at s=4, due to the bulk contributions of the quantum field in three space dimensions. However, it may be analytically continued to s=0 where hopefully there is no pole, thus giving a finite value to the expression. A detailed example of this regularization at work is given in the article on the Casimir effect, where the resulting sum is very explicitly the Riemann zeta-function. The zeta-regularization is useful as it can often be used in a way such that the various symmetries of the physical system are preserved. Besides the Casimir effect, zeta-function regularization is used in conformal field theory and in fixing the critical spacetime dimension of string theory.