5,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

In der griechischen Antike kannte man keine Irrationalzahlen im modernen Sinne, sondern nur Paare von Strecken, die kein gemeinsames Streckenmaß haben, die sich somit nicht zueinander verhalten, wie eine Grundzahl zu einer Grundzahl; d.h. solche Streckenverhältnisse sind nicht durch einen Bruch, durch eine rationale Zahl darstellbar, sie sind (wie man sagt) irrational. Die vorliegende Arbeit will nun darlegen, von welchen Streckenpaaren wahrscheinlich und in welcher Weise jeweils wohl erstmals gezeigt werden konnte, dass ihre Strecken kein gemeinsames Maß haben.Im Anhang wird ein antikes…mehr

Produktbeschreibung
In der griechischen Antike kannte man keine Irrationalzahlen im modernen Sinne, sondern nur Paare von Strecken, die kein gemeinsames Streckenmaß haben, die sich somit nicht zueinander verhalten, wie eine Grundzahl zu einer Grundzahl; d.h. solche Streckenverhältnisse sind nicht durch einen Bruch, durch eine rationale Zahl darstellbar, sie sind (wie man sagt) irrational. Die vorliegende Arbeit will nun darlegen, von welchen Streckenpaaren wahrscheinlich und in welcher Weise jeweils wohl erstmals gezeigt werden konnte, dass ihre Strecken kein gemeinsames Maß haben.Im Anhang wird ein antikes Verfahren 'rekonstruiert', welches das irrationale Verhältnis von Quadratseite und -diagonale (das sind die mutmaßlich erstgefundenen Strecken ohne gemeinsames Maß) näherungsweise durch Paare von Grundzahlen (durch Brüche) darstellt.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Der Autor studierte Philosophie, Mathematik, Gräzistik und veröffentlichte bisher zur Mathematik und Philosophie in der frügriechischen Antike (Dissertation), zu Platons Dialogen Phaidon, Theaitetos, Timaios und allgemein zu Platons Ontologie (im Buch zum Theaitetos).