51,95 €
51,95 €
inkl. MwSt.
Erscheint vor. 01.04.25
payback
26 °P sammeln
51,95 €
51,95 €
inkl. MwSt.
Erscheint vor. 01.04.25

Alle Infos zum eBook verschenken
payback
26 °P sammeln
Als Download kaufen
51,95 €
inkl. MwSt.
Erscheint vor. 01.04.25
payback
26 °P sammeln
Jetzt verschenken
51,95 €
inkl. MwSt.
Erscheint vor. 01.04.25

Alle Infos zum eBook verschenken
payback
26 °P sammeln

Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
  • Format: PDF

A Beginner's Guide to Mathematical Proof prepares mathematics majors for the transition to abstract mathematics, and introduces a wider readership of quantitative science students to the mathematical structures underlying more applied topics with an accessible, step-by-step approach requiring minimal mathematical prerequisites.

Produktbeschreibung
A Beginner's Guide to Mathematical Proof prepares mathematics majors for the transition to abstract mathematics, and introduces a wider readership of quantitative science students to the mathematical structures underlying more applied topics with an accessible, step-by-step approach requiring minimal mathematical prerequisites.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Mark DeBonis received his PhD in Mathematics from University of California, Irvine, USA. He began his career as a theoretical mathematician in the field of group theory and model theory, but in later years switched to applied mathematics, in particular to machine learning. He spent some time working for the US Department of Energy at Los Alamos National Lab as well as the US Department of Defense at the Defense Intelligence Agency as an applied mathematician of machine learning. He is at present working for the US Department of Energy at Sandia National Lab. His research interests include machine learning, statistics and computational algebra.