James G. Simmonds
A Brief on Tensor Analysis (eBook, PDF)
32,95 €
32,95 €
inkl. MwSt.
Sofort per Download lieferbar
16 °P sammeln
32,95 €
Als Download kaufen
32,95 €
inkl. MwSt.
Sofort per Download lieferbar
16 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
32,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
16 °P sammeln
James G. Simmonds
A Brief on Tensor Analysis (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.47MB
Andere Kunden interessierten sich auch für
- J. G. SimmondsA Brief on Tensor Analysis (eBook, PDF)62,95 €
- Raymond A. RyanIntroduction to Tensor Products of Banach Spaces (eBook, PDF)105,95 €
- Visualization and Processing of Tensor Fields (eBook, PDF)73,95 €
- Heinz SchadeTensoranalysis (eBook, PDF)109,95 €
- Serge LangUndergraduate Analysis (eBook, PDF)53,95 €
- Donald EstepPractical Analysis in One Variable (eBook, PDF)48,95 €
- Sudhir R. GhorpadeA Course in Multivariable Calculus and Analysis (eBook, PDF)46,95 €
-
-
-
In this text which gradually develops the tools for formulating and manipulating the field equations of Continuum Mechanics, the mathematics of tensor analysis is introduced in four, well-separated stages, and the physical interpretation and application of vectors and tensors are stressed throughout. This new edition contains more exercises. In addition, the author has appended a section on Differential Geometry.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 114
- Erscheinungstermin: 31. Oktober 2012
- Englisch
- ISBN-13: 9781441985224
- Artikelnr.: 44000874
- Verlag: Springer New York
- Seitenzahl: 114
- Erscheinungstermin: 31. Oktober 2012
- Englisch
- ISBN-13: 9781441985224
- Artikelnr.: 44000874
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
I Introduction: Vectors and Tensors.- Three-Dimensional Euclidean Space.- Directed Line Segments.- Addition of Two Vectors.- Multiplication of a Vector v by a Scalar ?.- Things That Vectors May Represent.- Cartesian Coordinates.- The Dot Product.- Cartesian Base Vectors.- The Interpretation of Vector Addition.- The Cross Product.- Alternative Interpretation of the Dot and Cross Product. Tensors.- Definitions.- The Cartesian Components of a Second Order Tensor.- The Cartesian Basis for Second Order Tensors.- Exercises.- II General Bases and Tensor Notation.- General Bases.- The Jacobian of a Basis Is Nonzero.- The Summation Convention.- Computing the Dot Product in a General Basis.- Reciprocal Base Vectors.- The Roof (Contravariant) and Cellar (Covariant) Components of a Vector.- Simplification of the Component Form of the Dot Product in a General Basis.- Computing the Cross Product in a General Basis.- A Second Order Tensor Has Four Sets of Components in General.- Change of Basis.- Exercises.- III Newton's Law and Tensor Calculus.- Rigid Bodies.- New Conservation Laws.- Nomenclature.- Newton's Law in Cartesian Components.- Newton's Law in Plane Polar Coordinates.- The Physical Components of a Vector.- The Christoffel Symbols.- General Three-Dimensional Coordinates.- Newton's Law in General Coordinates.- Computation of the Christoffel Symbols.- An Alternative Formula for Computing the Christoffel Symbols.- A Change of Coordinates.- Transformation of the Christoffel Symbols.- Exercises.- IV The Gradient, the Del Operator, Covariant Differentiation, and the Divergence Theorem.- The Gradient.- Linear and Nonlinear Eigenvalue Problems.- The Del Operator.- The Divergence, Curl, and Gradient of a Vector Field.- The Invariance of ? · v, ? × v, and ?v.- The Covariant Derivative.- The Component Forms of ? · v, ? × v, and ?v.- The Kinematics of Continuum Mechanics.- The Divergence Theorem.- Differential Geometry.- Exercises.
I Introduction: Vectors and Tensors.- Three-Dimensional Euclidean Space.- Directed Line Segments.- Addition of Two Vectors.- Multiplication of a Vector v by a Scalar ?.- Things That Vectors May Represent.- Cartesian Coordinates.- The Dot Product.- Cartesian Base Vectors.- The Interpretation of Vector Addition.- The Cross Product.- Alternative Interpretation of the Dot and Cross Product. Tensors.- Definitions.- The Cartesian Components of a Second Order Tensor.- The Cartesian Basis for Second Order Tensors.- Exercises.- II General Bases and Tensor Notation.- General Bases.- The Jacobian of a Basis Is Nonzero.- The Summation Convention.- Computing the Dot Product in a General Basis.- Reciprocal Base Vectors.- The Roof (Contravariant) and Cellar (Covariant) Components of a Vector.- Simplification of the Component Form of the Dot Product in a General Basis.- Computing the Cross Product in a General Basis.- A Second Order Tensor Has Four Sets of Components in General.- Change of Basis.- Exercises.- III Newton's Law and Tensor Calculus.- Rigid Bodies.- New Conservation Laws.- Nomenclature.- Newton's Law in Cartesian Components.- Newton's Law in Plane Polar Coordinates.- The Physical Components of a Vector.- The Christoffel Symbols.- General Three-Dimensional Coordinates.- Newton's Law in General Coordinates.- Computation of the Christoffel Symbols.- An Alternative Formula for Computing the Christoffel Symbols.- A Change of Coordinates.- Transformation of the Christoffel Symbols.- Exercises.- IV The Gradient, the Del Operator, Covariant Differentiation, and the Divergence Theorem.- The Gradient.- Linear and Nonlinear Eigenvalue Problems.- The Del Operator.- The Divergence, Curl, and Gradient of a Vector Field.- The Invariance of ? · v, ? × v, and ?v.- The Covariant Derivative.- The Component Forms of ? · v, ? × v, and ?v.- The Kinematics of Continuum Mechanics.- The Divergence Theorem.- Differential Geometry.- Exercises.