14,99 €
Statt 39,99 €**
14,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
14,99 €
Statt 39,99 €**
14,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 39,99 €****
14,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 39,99 €****
14,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Gebundenes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Smart Data is the new trend following the Big Data hype. The focus shifts from pure mass towards quality of data and the added value that data analysis can provide. To this end, Location-Based Social Networks (LBSN) are emerging as new area of application due to a vast amount of available personal information and the predominant demand for personalized user recommendations. In this social environment, personalization is extended from individual users to groups of users. Application scenarios include the recommendation of items to a group of users, recommending one user to another, or forming…mehr

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 15.47MB
  • FamilySharing(5)
Produktbeschreibung
Smart Data is the new trend following the Big Data hype. The focus shifts from pure mass towards quality of data and the added value that data analysis can provide. To this end, Location-Based Social Networks (LBSN) are emerging as new area of application due to a vast amount of available personal information and the predominant demand for personalized user recommendations. In this social environment, personalization is extended from individual users to groups of users. Application scenarios include the recommendation of items to a group of users, recommending one user to another, or forming groups of users via recommendation of users to groups. As a work of applied computer science, the goal of this thesis is to systematically establish solutions for group preference problems of mentioned application scenarios. Technical challenges are met by following a database approach which is scalable to LBSN datasets of Big Data magnitude and allows for a fast computation of recommendation results. Semantic aspects are met by application of Preference SQL as database-driven preference framework which facilitates data-adaptive recommendations. By this design, user models can be formulated and evaluated on social network data and recommendations can be easily integrated into existing system architectures. The development of individual solutions requires extensions of Preference SQL towards geo-social domains and group preferences. For item-to-group recommendations, novel means for the individual statement of preferences as well as the formation of group preferences become of importance. Applications in user-to-user recommendation require data aggregation from different user profiles and subsequent preference analytics for the generation of extended implicit preferences. In addition, the definition of data-adaptive similarity measures based on social and psychological aspects of real-life interactions is a major factor. These concepts are leveraged for user-to-group scenarios to implement effective strategies for problem instances of large user sets. In the course of solving these practical application problems, superior theoretical questions emerged, such as heuristic algorithms for hyper-exponential solution spaces, that are also addressed by this work. The validity of proposed solutions is verified by demo applications and the implementation of semantic benchmarks.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Florian Wenzel was born in Bayreuth (Germany) in 1983. From 2003 to 2009 he studied Computer Science at the University of Würzburg, Germany and UT Austin, TX, USA Since 2009 he works as a researcher at the Chair for Databases and Information Systems at the University of Augsburg, Germany. His research topics include preferences in Location-Based Social Networks, graph databases, and mobile applications as well as group preference problems and recommendations. In 2015 he received his doctor's degree for the thesis presented in this book.