The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer's theorem and its application to John Nash's work; the third applies Brouwer's theorem to spaces of infinitedimension; and the fourth rests on the work of Markov, Kakutani, and Ryll-Nardzewski surrounding fixed points for families of affine maps.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The chapters provide models for students to appreciate the art of a well-thought out seminar talk ... on a particular topic or theme. There are also a variety of exercises integrated into the lectures, 'to encourage active participation', which allow the text to be used for a course or an independent study. ... The book appears to be written to engage a young audience, yet there is more in it to provide pleasure to mathematicians further on in their career." (Tushar Das, Maa Reviews, maa.org, October, 2016)