R. E. Edwards
A Formal Background to Mathematics 2a (eBook, PDF)
A Critical Approach to Elementary Analysis
57,95 €
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
57,95 €
Als Download kaufen
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
29 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
57,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
29 °P sammeln
R. E. Edwards
A Formal Background to Mathematics 2a (eBook, PDF)
A Critical Approach to Elementary Analysis
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Zur Zeit liegt uns keine Inhaltsangabe vor.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 29.07MB
Andere Kunden interessierten sich auch für
- Frederick H. SoonStudent's Guide to Calculus by J. Marsden and A. Weinstein (eBook, PDF)30,95 €
- Jerrold MarsdenCalculus I (eBook, PDF)30,95 €
- Serge LangShort Calculus (eBook, PDF)30,95 €
- R. E. EdwardsA Formal Background to Mathematics (eBook, PDF)40,95 €
- Richard CourantIntroduction to Calculus and Analysis II/1 (eBook, PDF)44,95 €
- Harmonic Analysis and Hypergroups (eBook, PDF)73,95 €
- R. B. BurckelAn Introduction to Classical Complex Analysis (eBook, PDF)40,95 €
-
-
-
Zur Zeit liegt uns keine Inhaltsangabe vor.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 606
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461380962
- Artikelnr.: 44177447
- Verlag: Springer New York
- Seitenzahl: 606
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461380962
- Artikelnr.: 44177447
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.2 Infinite limits.- VII.3 Subsequences.- VII.4 The Monotone Convergence Principle again.- VII.5 Suprema and infima of sets of real numbers.- VII.6 Exponential and logarithmic functions.- VII.7 The General Principle of Convergence.- VIII: Continuity and Limits of Functions.- and hidden hypotheses.- VIII.1 Continuous functions.- VIII.2 Properties of continuous functions.- VIII.3 General exponential, logarithmic and power functions.- VIII.4 Limit of a function at a point.- VIII.5 Uniform continuity.- VIII.6 Convergence of sequences of functions.- VIII.7 Polynomial approximation.- VIII.8 Another approach to expa.- IX: Convergence of Series.- and hidden hypotheses.- IX.1 Series and their convergence.- IX.2 Absolute and conditional convergence.- IX.3 Decimal expansions.- IX.4 Convergence of series of functions.- X: Differentiation.- and hidden hypotheses.- X.1 Derivatives.- X.2 Rules for differentiation.- X.3 The mean value theorem and its corollaries.- X.4 Primitives.- X.5 Higher order derivatives.- X.6 Extrema and derivatives.- X.7 A differential equation and the exponential function again.- X.8 Calculus in several variables.- XI: Integration.- XI.1 Integration and area.- XI.2 Analytic definition and study of integration.- XI.3 Integrals and primitives.- XI.4 Integration by parts.- XI.5 Integration by change of variable (or by substitution).- XI.6 Termwise integration of sequences of functions.- XI.7 Improper integrals.- XI.8 First order linear differential equations.- XI.9 Integrals in several variables.- XII: Complex Numbers: Complex Exponential and Trigonometric Functions.- XII.1 Definition of complex numbers.- XII.2 Groups, subgroups and homomorphisms.- XII.3 Homomorphisms ofRinto?; complex exponentials.- XII.4 The exponential function with domainC.- XII.5 The trigonometric functions cosine and sine.- XII.6 Further inverse trigonometric functions.- XII.7 The simple harmonic equation.- XII.8 Another differential equation.- XII.9 Matrices and complex numbers.- XII.10 A glance at Fourier series.- XII.11 Linear differential equations with constant coefficients.- XIII: Concerning Approximate Integration.- XIII.1 Quotes from syllabus notes.- XIII.2 Notation and preliminaries.- XIII.3 Precise formulation of statements XIII.1.1 - XIII.1.3.- XIII.4 Some corrected versions.- XIII.5 Falsity of statements XIII.3.1 - XIII.3.3.- XIII.6 The formulas applied to tabulated data.- XIV: Differential Coefficients.- XIV.1 The d-notation and differential coefficients.- XIV.2 The simple harmonic equation.- XV: Lengths of Curves.- XV.1 Quotes and criticisms.- XV.2 Paths.- XV.3 Lengths of paths.- XV.4 Path length as an integral.- XV.5 Ratio of arc length to chord length.- XV.6 Additivity of arc length.- XV.7 Equivalent paths; simple paths.- XV.8 Circular arcs; application to complex exponential and trigonometric functions.- XV.9 Angles and arguments.- XV.10 General remarks about curves.
VII: Convergence of Sequences.- Hidden hypotheses.- VII.1 Sequences convergent inR.- VII.2 Infinite limits.- VII.3 Subsequences.- VII.4 The Monotone Convergence Principle again.- VII.5 Suprema and infima of sets of real numbers.- VII.6 Exponential and logarithmic functions.- VII.7 The General Principle of Convergence.- VIII: Continuity and Limits of Functions.- and hidden hypotheses.- VIII.1 Continuous functions.- VIII.2 Properties of continuous functions.- VIII.3 General exponential, logarithmic and power functions.- VIII.4 Limit of a function at a point.- VIII.5 Uniform continuity.- VIII.6 Convergence of sequences of functions.- VIII.7 Polynomial approximation.- VIII.8 Another approach to expa.- IX: Convergence of Series.- and hidden hypotheses.- IX.1 Series and their convergence.- IX.2 Absolute and conditional convergence.- IX.3 Decimal expansions.- IX.4 Convergence of series of functions.- X: Differentiation.- and hidden hypotheses.- X.1 Derivatives.- X.2 Rules for differentiation.- X.3 The mean value theorem and its corollaries.- X.4 Primitives.- X.5 Higher order derivatives.- X.6 Extrema and derivatives.- X.7 A differential equation and the exponential function again.- X.8 Calculus in several variables.- XI: Integration.- XI.1 Integration and area.- XI.2 Analytic definition and study of integration.- XI.3 Integrals and primitives.- XI.4 Integration by parts.- XI.5 Integration by change of variable (or by substitution).- XI.6 Termwise integration of sequences of functions.- XI.7 Improper integrals.- XI.8 First order linear differential equations.- XI.9 Integrals in several variables.- XII: Complex Numbers: Complex Exponential and Trigonometric Functions.- XII.1 Definition of complex numbers.- XII.2 Groups, subgroups and homomorphisms.- XII.3 Homomorphisms ofRinto?; complex exponentials.- XII.4 The exponential function with domainC.- XII.5 The trigonometric functions cosine and sine.- XII.6 Further inverse trigonometric functions.- XII.7 The simple harmonic equation.- XII.8 Another differential equation.- XII.9 Matrices and complex numbers.- XII.10 A glance at Fourier series.- XII.11 Linear differential equations with constant coefficients.- XIII: Concerning Approximate Integration.- XIII.1 Quotes from syllabus notes.- XIII.2 Notation and preliminaries.- XIII.3 Precise formulation of statements XIII.1.1 - XIII.1.3.- XIII.4 Some corrected versions.- XIII.5 Falsity of statements XIII.3.1 - XIII.3.3.- XIII.6 The formulas applied to tabulated data.- XIV: Differential Coefficients.- XIV.1 The d-notation and differential coefficients.- XIV.2 The simple harmonic equation.- XV: Lengths of Curves.- XV.1 Quotes and criticisms.- XV.2 Paths.- XV.3 Lengths of paths.- XV.4 Path length as an integral.- XV.5 Ratio of arc length to chord length.- XV.6 Additivity of arc length.- XV.7 Equivalent paths; simple paths.- XV.8 Circular arcs; application to complex exponential and trigonometric functions.- XV.9 Angles and arguments.- XV.10 General remarks about curves.