19,95 €
19,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
10 °P sammeln
19,95 €
19,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
10 °P sammeln
Als Download kaufen
19,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
10 °P sammeln
Jetzt verschenken
19,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
10 °P sammeln
  • Format: PDF

Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. L?tzen argues that the role of impossibility results have…mehr

Produktbeschreibung
Many of the most famous results in mathematics are impossibility theorems stating that something cannot be done. Good examples include the quadrature of the circle by ruler and compass, the solution of the quintic equation by radicals, Fermat's last theorem, and the impossibility of proving the parallel postulate from the other axioms of Euclidean geometry. This book tells the history of these and many other impossibility theorems starting with the ancient Greek proof of the incommensurability of the side and the diagonal in a square. L?tzen argues that the role of impossibility results have changed over time. At first, they were considered rather unimportant meta-statements concerning mathematics but gradually they obtained the role of important proper mathematical results that can and should be proved. While mathematical impossibility proofs are more rigorous than impossibility arguments in other areas of life, mathematicians have employed great ingenuity to circumvent impossibilities by changing the rules of the game. For example, complex numbers were invented in order to make impossible equations solvable. In this way, impossibilities have been a strong creative force in the development of mathematics, mathematical physics, and social science.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Jesper Lützen is a historian of mathematics and the physical sciences. He is Professor Emeritus at the Department of Mathematical Sciences at the University of Copenhagen, where he has taught since 1989.